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Throughout these notes, unless specified otherwise, we make the following con-
ventions. G denotes a compact and connected Lie group. For a smooth map φ :
M → N between smooth mainfolds φ∗ orDφ denotes the pushforward/differential,
while φ∗ denotes the pullback. The tangent space at the identity will be denoted
by LG (if G is not a Lie group, LG denotes the tangent space at a distinguished
point which will be clear from the context). Conjugation by an element of
g ∈ G will be denoted by c(g), while the image of g ∈ G under the adjoint
representation will be denoted by Ad(g).

1. Tori and the Weyl Group

1.1. Abelian Lie Groups

Definition 1.1. A torus T in G is a compact, connected, abelian immersed
Lie subgroup. A torus T in G is called maximal if, for any other torus T ′ we
have

T ⊆ T ′ ⇒ T = T ′. (1)

Observation 1.2. By (a consequence of) Cartan’s theorem a torus is an em-
bedded subgroup.

Proof. Let ι : T ↪→ G denote the inclusion of the Lie subgroup. Since T is
compact, so is i(T ). Thus i(T ) ⊆ G is a closed subgroup and thus by Cartan’s
theorem i is an embedding of Lie groups.

Observation 1.3. G contains a maximal torus T . However, T is in general
(and usually) not unique. In fact, we will see later (Theorem 2.1) that if the
maximal torus is unique, then it coincides with G.

Proof. Let T(G) denote the set of tori in G. The 0-torus T 0 = {e} ⊆ G is a
Lie subgroup which is a torus, i.e. T(G) ̸= ∅. Assume not that T(G) did not
have a maximal element. Then for any T ∈ T(G) there exists a T ′ ̸= T s.t.
T ⊊ T ′ ⊆ G. Since tori are compact and connected, Lemma A.1 implies that

dim(T ) < dim(T ′) ≤ dim(G). (2)

Since dim(G) < ∞, this is a contradiction.
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As the name suggests, a torus in the sense of Definition 1.1 is isomorphic to
a torus in the usual sense i.e. Rd /Zd for some d ≥ 0. This follows from the
classification of abelian Lie groups:

Theorem 1.4 (Classification of abelian Lie groups; [BtD, I. (3.6), (3.7)]).

1. Let G be a connected, abelian Lie group. Then G ∼= Td ×Re for some
d, e ≥ 0.

2. Let G be a compact, abelian Lie group. Then G ∼= Td ×
∏k

i=1 Z /ni Z for
some d, n1, . . . , nk ≥ 0.

Definition 1.5. Let T be a maximal torus in G, and let

N := {g ∈ G : gTg−1 = T} (3)

be the normalizer of T in G. The the group W := N/T is called the Weyl
group of G.

Note that since T is a closed subgroup, so is

N = (c(·)(t))−1(T ) ∩
⋂
t∈T

(c((·)−1)(t))−1(T ), (4)

where g 7→ c(g)(t) = gtg−1 denotes conjugation by g, applied to t.
By Definition 1.5, for a given G, the Weyl group W depends on the maximal
torus T in G. However, as will be shown in Theorem 2.1 all maximal tori are
conjugate to each other and as a consequence all Weyl groups are isomorphic.

The normalizer N operates on T via

N × T → T ; (n, t) = ntn−1 (5)

and, since T is abelian and thus operates trivially on itself, the Weyl group also
operates on T via

W × T → T ; (nT, t) = ntn−1. (6)

Theorem 1.6. The Weyl group W of G is finite.

Proof. Let N0 denote the connected component of N containing the identity1.
We will show that N0 ⊆ T and thus N0 = T . It then follows that 1) since N
is compact, so is W = N/T = N/N0, and 2) since, as the homeomorphic image
of an open set, nN0 is open in N for every n ∈ N , and [n] ∈ N/N0 is open
precisely if π−1(nN0) = nN0 ⊆ N is open, that every singleton in W is open.
Hence W is 1) compact and 2) discrete and thus finite.

Now, to see that N0 ⊆ T let k := dim(T ). Recall that the automorphisms of a
torus T are precisely those linear transformations on Rd that preserve the lattice
Zd, i.e. Aut(T ) = GL(k,Z) ⊆ GL(k,R) and consider the continuous map

1Recall that the connected component of a topological group is necessarily a subgroup:
Since · : G0×G0 → G is continuous and G0 is connected, the image is connected. Thus, since
e = e · e ∈ ·(G0 ×G0), the image is contained in a connected component, which contains the
identity, i.e. it is contained in G0. The same argument works for (·)−1 : G0 → G.

2



N
c−→ Aut(T )

D−→ Aut(LT ) ∼= Aut(Rk) ∼= GL(k,R) (7)

n 7→ c(n) 7→ Ad(n). (8)

Then the image of L in (8) is precisely the subgroup GL(k,Z), which is discrete
in GL(k,R). Therefore, since N0 is connected, the image of N0 under the above
map has to be the identity in GL(k,R). In other words, N0 acts trivially on T
by conjugation.

As a consequence, for any one-parameter group α : R → N0 the subgroup

α(R) · T := {α(a)t : a ∈ R, t ∈ T} ⊆ G (9)

is (as a continuous image of connected spaces) connected and abelian: ∀a, b ∈ R
and ∀t1, t2 ∈ T we have

α(a)t1α(b)t2 = α(a+ b)α(b)−1t1α(b)︸ ︷︷ ︸
=t1

t2 (10)

= α(a+ b)t1t2 (11)

= α(b+ a)t2t1 (12)

= α(b+ a)α(a)−1t2α(a)︸ ︷︷ ︸
=t2

t1 (13)

= α(b)t2α(a)t1 (14)

where we used the fact that N0 acts trivially (by conjugation) on T . Thus by
maximality of T we have α(R) · T = T and in particular α(R) ⊆ T .
Since exp : LG → G is a local diffeomorphism around 0 (since the derivative at
0 is the identity), for any g in a neighborhood of e ∈ G there is a one-parameter
subgroup containing g. Such a subgroup is given by t 7→ exp(t log(g)), where
log denotes the local inverse of exp. Hence the one-parameter subgroups cover
an open neighborhood of e in N0, which thus is also contained in T . Thus, since
N0 is connected, by Lemma 1.7 this open neighborhood generates N0 and hence
N0 ⊆ T , which concludes the proof.

Lemma 1.7. Let G be a topological group, let G0 ⊆ G be its connected compo-
nent, and let U be an open neighborhood of e ∈ G contained in G0, and let ⟨U⟩
denote the subgroup generated by U . Then ⟨U⟩ = G0.

Proof. We want to show that the subgroup ⟨U⟩, which is generated by U is non-
empty, open, and closed. Assume without loss of generality U−1 ⊆ U (otherwise
pass to U ∩ U−1).

1. Non-empty: Since e ∈ U ⊆ ⟨U⟩ the subgroup is non-empty.

2. Open: For any g ∈ ⟨U⟩ we have g · U ⊆ ⟨U⟩.

3. Closed: If g ̸∈ ⟨U⟩, then g · U ∩ ⟨U⟩ = ∅, as otherwise gu = v for some
u ∈ U, v ∈ ⟨U⟩ and thus g = vu−1 ∈ ⟨U⟩. A contradiction. Hence the
complement of ⟨U⟩ is also open.
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2. Conjugates of Maximal Tori in G

The main theorem of this talk will be the following:

Theorem 2.1. Let T and T ′ be two maximal tori in G. Then

(1) the conjugate of T is again a maximal torus,

(2) T and T ′ are conjugate; i.e. there exists a g ∈ G s.t. T ′ = gTg−1,

(3) for any g ∈ G there exists a maximal torus T in G s.t. g ∈ T , and

(4) the Weyl group is unique up to conjugation.

Its proof relies on the mapping degree of conjugations of the torus.

Theorem 2.2 (Mapping Degree; [BtD, I. (5.19)]). Let M,N be compact, con-
nected, oriented, n-dimensional manifolds and let f : M → N be a (homotopy
class of a) differentiable function. Then there is an integer deg(f) such that for
any α ∈ Ωn(N) we have ∫

M

f∗α = deg(f) ·
∫
N

α. (15)

If q ∈ N such that f−1(q) consists of k + l points p1, . . . , pk+l such that q is a
regular value of f (i.e. that Df is bijective at every pi), preserves orientation
at p1, . . . , pk and reverses orientation at pk+1, . . . , pk+1, then deg(f) = k− l. In
particular, if f is not surjective, then there exists a q ∈ N such that f−1(q) = ∅
and thus deg(f) = 0.

In particular, it is a consequence of the following important lemma, the proof
of which will be split up into several parts.

Lemma 2.3. Let T be a maximal torus in G. Then the map

q : G/T × T → G; (g, t) 7→ gtg−1 (16)

has mapping degree deg(q) = |W |, where |W | is the order of the Weyl group W
associated to T . In particular, since |W | > 0, q is surjective.

The proof of Lemma 2.3 is rather lengthy. Let us therefore first prove Theorem
2.1 from Lemma 2.3 and then turn to a proof of Lemma 2.3.

Proof of Thm. 2.1 from Lem. 2.3. (1) Let g ∈ G. Since x 7→ gxg−1 is a diffeo-
morphism G → G and T is compact and connected, so is gTg−1. Commuta-
tivity and maximality of gTg−1 follow immediately from the commutativity
and maximality of T .

(2) Let T and T ′ be two maximal tori in G. Let t′ be a generator2 of T ′.
By Lemma 2.3 there is a g ∈ G such that t′ ∈ gTg−1 and hence, since t′

generates T ′ we have T ′ ⊆ gTg−1 and thus, by maximality of T ′, T ′ =
gTg−1.

2Recall that t ∈ T is called a generator of T if the generated subgroup {tk : k ∈ Z} is
dense in T .
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(3) Since q is surjective, every g ∈ G is contained in gTg−1 for some g ∈ G,
which, by (1) is again a maximal torus.

(4) Let N and N ′ be the normalizers of T and T ′, and let W and W ′ be the
resulting Weyl groups, respectively. Let g ∈ G be such that T ′ = gTg−1,
the existence of which is proven in (2). Then for any n ∈ N, t′ = gtg−1 ∈ T
we have

(gng−1)t′(gng−1)−1 = gn g−1t′g︸ ︷︷ ︸
=t

n−1g−1 = g(ntn−1)g−1 ∈ gTg−1 = T ′

(17)

Hence, gng−1 ∈ N ′, and, by assumption gTg−1 ⊆ T ′. Hence conjugation
by g decends form N to N/T = W and thus provides an isomorphism (with
inverse being conjugation by g−1). Thus the Weyl group is unique up to
isomorphism (given by conjugation).

2.1. Some Observations

We will want to use the second part of Theorem 2.2 to compute the mapping
degree of q from its fibre and conclude that q is surjective. However, for this we
do not only need to understand the cardinality of the fibre of q (easy), but also
the effect of q on the orientation (hard). For the latter we need orientations on
G/T × T and on G that facilitate computation (e.g. are left-invariant, etc.; see
Observations 2.4 and 2.6), and identifications (see. Observation 2.5) that al-
low the tangent map q∗ to be understood as an endomorphism (not just a linear
map), which then allows a computation of the determinant in the classical sense.

Before we turn to a proof of Lemma 2.3, let us first make some observations
about the map

q : G/T × T → G; (g, t) 7→ gtg−1 (18)

from Lemma 2.3 and the involved spaces.

Observation 2.4. The map q is a smooth map between orientable compact
manifolds of equal dimension. Note also that while T is generally not normal in
G, and thus the space G/T does not carry a natural group structure, there still
are the following natural left-actions:

G× T ↷ G/T × T, G ↷ G. (19)

Proof. As a quotient of a compact Lie group G by a compact and connected
subgroup T the orbit space G/T is a compact and orientable3 manifold of di-
mension4 dim(G) − dim(T ). The Lie groups T and G are orientable because
they are parallelizable and compact and connected by assumption.

3The orbit space is orientable since T is connected - see Prof. Dr. Leeb’s Lecture Notes
”General Facts about Lie Groups”, end of page 7.

4See [Lee, Thm. 21.10], the ”Quotient Manifold Theorem”.
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Observation 2.5. Let ⟨·, ·⟩ be an AdG-invariant inner product5 on LG, let
LT ⊆ LG denote the Lie algebra of T , and let LT⊥ ⊆ LG denote its orthogonal
complement (w.r.t. ⟨·, ·⟩) in LG. Then the splitting

LG = LT⊥ ⊕ LT ∼= L(G/T )⊕ LT (20)

is AdT invariant. As a consequence of the invariance, there is an induced action

AdG/T : T → Aut(L(G/T )). (21)

For the rest of the talk we will make the identification LT⊥⊕LT ∼= L(G/T )⊕LT .

Proof. 1) To see that LT is AdT -invariant, let t ∈ T and X ∈ LT . Then for
any s ∈ R, using the fact that c(t) ◦ exp = exp ◦Adt, we have

exp(sX)︸ ︷︷ ︸
∈T

= t exp(sX)t−1 = c(t) exp(sX) = exp(sAdt X). (22)

Differentiating both sides of the resulting equation in s and evaluating at s = 0
gives X = Adt X.

2) To see that LT⊥ is invariant, let t ∈ T and X ∈ LT⊥; i.e. let ⟨X,Y ⟩ = 0 for
any Y ∈ LT . Hence, by AdT invariance of LT and the inner product

⟨Adt X,Adt Y ⟩ = ⟨X,Y ⟩ = 0. (23)

Since Adt ∈ Aut(LT ), this implies that ⟨Adt X,Z⟩ = 0 for every Z ∈ LT and
hence Adt X ∈ LT⊥.

3) To see the second equality in (20) let g ∈ G be arbitrary and let π : G →
G/T denote the projection map. On the one hand, consider a smooth curve
γ : (−1, 1) → gT ⊆ G such that γ(0) = g. Then

(π∗)∗(γ
′(0)) = ( π ◦ γ︸ ︷︷ ︸

=[g]∈G/T

)′(0) = 0 (24)

Hence TggT ⊆ ker(π∗)∗. On the other hand, by [Lee, Thm. 21.10], the ”Quo-
tient Manifold Theorem”, π is a submersion. Thus (π∗)g : TgG → TgT (G/T )
is surjective and hence dimker dπg ≤ dimT . Thus TggT = ker dπg and hence
TgT (G/T ) ∼= TgG/TggT .

Observation 2.6. There are unique (up to choice of sign) invariant (under the
actions in (19)) volume forms

dg on G invariant under action of G
d(gT ) on G/T invariant under action of G
dt on T invariant under action of T

Each of them may be constructed by choosing a top-dimensional alternating form
at the (image of) the identity and then defining the form at a point by pulling
back through left-multiplication of the action.

5See Proposition A.2
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In particular, π∗ d(gT ) ∈ Ωn−k(G) and pr∗2((dt)e) ∈ Altk(LG), where pr2 :
LG = L(G/T ) ⊕ LT → LT . Now, (via pullback along left-multiplication) the
alternating k-form pr∗2((dt)e) determines a left-invariant k-form dτ ∈ Ωk(G)
such that dτ |T = dt and such that π∗ d(gT )∧ dτ is a left-invariant volume form
on G, since both parts of the wedge are left-invariant. Hence, we may choose
the signs of the forms dg, d(gT ), and dt such that π∗ d(gT )∧dτ = c ·dg for some
c > 0. One can show6 that c = 1, but this is not important for our concerns.

2.2. The determinant of the conjugation map q

Recall that for a smooth map φ : M → N between n-dimensional smooth
manifolds, the pushforward induces a map on vector fields φ∗ : Γ(TM) →
Γ(TN), which in turn, via pullback, induces a linear map on n-forms: φ∗ :
ΩnN → ΩnM . Since for each p the spaces Altn(TpM) and Altn(Tφ(p)N) are
1-dimensional, this map can be be given, after choice of section α and β, by a
real valued function det(φ) : M → R which then is defined by

φ∗α = det(φ)β. (25)

If M = N there is a canonical choice: α = β; which then makes det(φ) inde-
pendent of the choice of α. However, if M ̸= N , a choice has to be made.

Observation 2.6 provides us with two reasonable volume forms on G and G/T ×
T , respectively:

dg = π∗ d(gT ) ∧ dτ ∈ Ωn(G), dτ |T = dt ∈ Ωk(T ), (26)

α = pr∗1 d(gT ) ∧ pr∗2 dt ∈ Ωn(G/T × T ). (27)

which are invariant under the actions in (19). With the identification (20) we
further have

α(eT,e) = dge. (28)

Definition 2.7. The determinant det(q) : G/T × T → R of the conjugation
map q is defined by the equation

q∗ dg = det(q) · α. (29)

Proposition 2.8. For every (gT, t) ∈ G/T × T the determinant of the conju-
gation map q : G/T × T → G at (gT, t) is given by

det(q)(gT, t) = det(AdG/T (t
−1)− idL(G/T )), (30)

where idL(G/T ) is the identity map on L(G/T ). The determinant is to be un-

derstood as that of an endomorphism of L(G/T ) ∼= LT⊥.

Proof. In this proof, let us write [g] := gT for equivalence classes in G/T , let
ℓ· denote the left-action in (19) and let ([g], t) ∈ G/T × T be fixed throughout
the proof. We want to use the invariance of the involved forms to reduce the

6See [BtD, p. 160, 161].
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computation of the determinant at ([g], t) ∈ G/T × T to a computation at
(eT, e). For this, consider the function

φ : G/T × T
ℓ(g,t)−−−→ G/T × T

q−→ G
ℓgt−1g−1

−−−−−−→ G. (31)

Using invariance of the volume forms and the definition of the determinant of q
we have

φ∗ dg = ℓ∗(g,t)(q
∗(ℓ∗gt−1g−1 dg))) (32)

= ℓ∗(g,t)(q
∗(dg)) (33)

= ℓ∗(g,t)(det(q) · α) (34)

= det(q) · (ℓ∗(g,t)α) (35)

= det(q) · α, (36)

and φ(eT, e) = (gt−1g−1)gtg−1 = e. Hence

(φ∗ dg)([e],e) = det(q)(g, t) · α([e],e). (37)

and thus the computation of det(q)([g], t) is reduced to that of (φ∗ dg)([e],e). By
(28) this amounts to computing the transformation of a degree n alternating
tensor under pullback which can be done by computing the differential of φ at
([e], e) as an endomorphism

L(G/T )⊕ LT → L(G/T )⊕ LT. (38)

For any ([h], s) ∈ G/T × T we may rewrite the application of φ as

φ([h], s) = ℓgt−1g−1(q(ℓ([g],t)([h], s) (39)

= ℓgt−1g−1(q([gh], ts)) (40)

= ℓgt−1g−1(([gh])ts[(gh)−1]) (41)

= (gt−1g−1)(([gh])ts[(gh)−1]) (42)

= gt−1[h]ts[h−1]g−1 (43)

= cg(ct−1([h])s[h−1]). (44)

Thus, using the chain rule and the product rule, the differential at ([e], e) is
given by

(X,Y ) 7→ Ad(g) ◦ (AdG/T (t
−1)X + Y −X), (45)

where AdG/T denotes the induced action in (21). Since the inner product on
LG is AdG-invariant i.e. Ad(g) is orthogonal w.r.t. this inner product, the
determinant of Ad(g) is ±1. Since Ad(e) = idLG and G is connected, we
have Ad(g) = 1. Using the identification (20) and the AdT -invariance of the
splitting in Observation 2.5, this gives an endomorphism in block form, whose
determinant is thus

det

(
AdG/T (t

−1)− idL(G/T ) 0
0 idLT

)
= det(AdG/T (t

−1)− idL(G/T )) (46)
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This concludes the proof.

Lemma 2.9. Let t ∈ T be a topological generator. Then

1) q−1(t) consists of |W | many points and

2) det(q)(gT, s) > 0 for any (gT, s) ∈ q−1(t)

Proof. 1) Let N(T ) denote the normalizer of T in G and assume that t ∈ T is
a topological generator of T . Then for a fixed gT ∈ G/T

∃s ∈ T :q(gT, s) = gsg−1 = t (47)

⇔ ∃s ∈ T :g−1tg = s ∈ T (48)

⇔g−1Tg ⊆ T (49)

⇔g ∈ N(T ). (50)

Therefore

q−1(t) = {(gT, g−1tg) ∈ G/T × T : g ∈ N(T )} (51)

Now, note that if two elements (gT, g−1tg), (hT, h−1th) in q−1(t) are equal if
and only if h−1g ∈ T . Thus q−1(t) is in bijection to W = N(T )/T which gives
the result.
2) Recall from Proposition 2.8 that det(q) is given by the determinant of an
endomorphism of L(G/T ). We want to show that this endomorphism has no
real eigenvalues. If that is the case, as an endomorphism of a real vector space,
the eigenvalues come in complex conjugated pairs and thus the determinant (as
a product of eigenvalues) is non-negative. Moreover, since this implies that 0
cannot be an eigenvalue, this implies that the determinant is strictly positive.
Firstly, if AdG/T (t

−1)−idL(G/T ) had a real eigenvalue, then so would AdG/T (t
−1)

(since − idL(G/T ) just shifts the spectrum of AdG/T (t
−1) by −1). Since, w.r.t.

the AdG invariant inner product, AdG/T (t
−1) is an orthogonal transformation,

that eigenvalue would have to be ±1. In that case, since Ad(gh) = Ad(g)◦Ad(h)
that would imply that AdG/T (t

−2) had eigenvalue 1. We show that this is a
contradiction:
Assume there exists a non-zero X ∈ L(G/T ) ⊆ LG such that AdG/T (t

−2)X =
X and let s ∈ R be arbitrary. Then by linearity of the adjoint representation
and naturality of the exponential map exp : G → LG we have

c(t−2) exp(sX) = exp(AdG/T (t
−2)sX) = exp(sX), (52)

and hence

c(t−2k) exp(sX) = exp(sX), k ∈ Z . (53)

By Kronecker’s theorem A.3, t−2 is also a topological generator and hence

c(t′) exp(sX) = exp(sX), ∀t′ ∈ T. (54)

Thus the one parameter subgroup H := {exp(sX)|s ∈ R} is left pointwise
invariant by conjugation of T , i.e. every element in H commutes with every
element in T . ThusH ·T is abelian, compact and connected. ThereforeH ·T ⊆ T
and hence H ⊆ T . Therefore X ∈ LT ∩ L(G/T ) = {0}. A contradiction.
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The following is a nice consequence of the proof above:

Observation 2.10. If t topologically generates T , then AdG/T (t) operates on
L(G/T ) and has no real eigenvalues. Hence the dimension of G/T is even.

Finally, let us complete the proof of Lemma 2.3.

Proof of Lemma 2.3. By (1) of Lemma 2.9 q−1(t) consists precisely of |W |many
points. By (2) of Lemma 2.9, q is orientation preserving at each of these points.
Hence as a consequence of the second part of Theorem 2.2

deg(q) = |W | > 0, (55)

and thus by the last part of Theorem 2.2 q is surjective.

Proposition 2.11 (Weyl’s Integration Formula). Let f : G → R be continuous.
Then

|W | ·
∫
G

f(g) dg =

∫
T

[
det(idL(G/T ) −AdG/T (t

−1))

∫
G

f(gtg−1) dg

]
dt. (56)

Proof. Via Lemma 2.3 and the definition of the mapping degree, the left hand
side becomes

|W | ·
∫
G

f(g) dg = deg(q) ·
∫
G

f(g) dg =

∫
G/T×T

q∗(f dg) =

∫
G/T×T

(f ◦ q)q∗ dg.

(57)
By (29) and (27) this gives∫

G/T×T

(f ◦ q) q∗ dg︸ ︷︷ ︸
=det(q)α

=

∫
G/T×T

(f ◦ q) det(q)(pr∗1(dgT ) ∧ pr∗2 dt). (58)

By Fubini’s theorem and Proposition 2.8 we obtain

=

∫
T

(∫
G/T

(f ◦ q) det(q) dgT

)
dt (59)

=

∫
T

(
det(AdG/T (t

−1)− idL(G/T ))

∫
G/T

(f ◦ q) dgT

)
dt. (60)

Finally, writing out q as a function on G instead of G/T this yields

=

∫
T

[
det(idL(G/T ) −AdG/T (t

−1))

∫
G

f(gtg−1) dg

]
dt. (61)

In the last step we also used the fact that the dimension of L(G/T ) is even
(noted in Observation 2.10), to switch sign inside the determinant.
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An interpretation of the formula: For a fixed t in the maximal torus T , define
ft(g) = f(gtg−1). Note that ft is constant on cosets of T and f factors into
f = ft ◦ π. We may thus express the integral of f on G by first holding t
fixed, integrating over the orbit gT , then weighing the result by the factor
det(idL(G/T ) −AdG/T (t

−1)) and integrating the result over T . In this sense, if
we normalize vol(G) = vol(G/T ) = 1, then det(idL(G/T ) −AdG/T (t

−1)) can be
interpreted as the volume of the conjugacy class of t.

A. Some Further Propositions

Lemma A.1. Let N be a connected C∞-manifold and let M be a compact C∞-
submanifold with inclusion ι : M ↪→ N . Then dim(M) < dim(N), unless M
and N are diffeomorphic.

Proof. Recall that if ι is an immersion, then for any p ∈ M the map (Dι)p :
TpM → Tι(p)N is injective and hence

dim(M) = dim(TpM) ≤ dim(Tι(p)N = dim(N). (62)

To see that dim(M) has to be strictly smaller than dim(N) assume dim(M) =
dim(N) and M and N are not diffeomorphic. Then ι∗ is pointwise injective and
dim(TpM) = dim(Tι(p)N) by assumption, we conclude that ι∗ is also pointwise
surjective and hence a submersion. In particular, ι∗ is pointwise invertible
and thus as local diffeomorphism. The map ι is thus an open map and hence
ι(M) ⊆ N is open. Also, since M is compact, ι(M) ⊆ N is closed and therefore
closed. Thus, since N is connected ι(M) = N and ι is surjective. Hence ι is a
bijective local diffeomorphism and thus a global diffeomorphism.

Proposition A.2. Let b : LG× LG → R be an inner product on LG. Then

LG× LG → R (63)

(X,Y ) 7→ ⟨X,Y ⟩ :=
∫
G

b (Ad(g)X,Ad(g)Y ) dg, (64)

is an AdG-invariant inner product, where dg denotes the bi-invariant Haar mea-
sure on G.

Proof. The right hand side is finite since the integrand is a continuous function
on a compact topological space and thus bounded and since the Haar measure
is finite.

Bi-linearity and positivity are immediate. Assume X ∈ LG such that

0 = ⟨X,X⟩ =
∫
G

b (Ad(g)X,Ad(g)X) dg (65)

Then ∀g ∈ G : b (Ad(g)X,Ad(g)X) = and thus, since b is non-degenerate,
Ad(g)X = 0. Since Ad(g) ∈ Aut(LG), this implies X = 0.

AdG invariance follows from the fact that g 7→ Ad(g) is a homomorhism and
from the right-invariance of dg.
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Theorem A.3 (Kronecker). Let v = (v1, . . . , vn) ∈ Rn. Then exp(v) ∈ Tn is
a topological generator if and only if 1 and v1, . . . , vn are linearly independent
over Q; i.e. for every q0, q1, . . . , qn ∈ Q

q1v1 + . . .+ qnvn = q0 ⇒ q0 = q1 = . . . = qn = 0. (66)

Theorem A.4 ((Consequence of) Cartan’s Theorem). Let A ⊆ G be a closed
subgroup of a Lie group G. Then A is an embedded Lie subgroup.
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Classification of Rank 1 Lie Groups

Gideon Chiusole

December 14, 2023

Throughout these notes, let G be a connected, compact Lie group, let N(H)
denote the normalizer of a subgroup H ⊆ G and let 0 denote the trivial group.

1 Definitions and Basic Results

Definition 1.1. The rank k of G is the dimension of its maximal torus.

The notion of rank above is well defined since all maximal tori in G are conjugate
and thus have the same dimension. The dimension of a torus is its only invariant
as a Lie group. While the Weyl group of a maximal torus is a more refined
invariant, it seems reasonable that, even though only a crude invariant, the
classification of Lie groups of low rank is possible. This is the case for k = 0, 1.

Theorem 1.2. If G has rank k = 0, then G is trivial.

Proof. Assume G is non-trivial, then since it is assumed to be connected, it
must have dimension at least 1. Hence there is a non-zero element X ∈ LG.
Let s 7→ α(s) := exp(sX) be the one-parameter subgroup tangent to X. Since
exp is a local diffeomorphism, α is a non-trivial subgroup. Hence α(R)) is a
torus in G.

Theorem 1.3. If G has rank k = 1, then either G ∼= U(1), G ∼= SO(3), or
G ∼= SU(2). The latter two have dimension 3 and are non-commutative, while
the first has dimension 1 and is abelian.

The proof will proceed in a few steps.

2 The abelian case

Proof. Assume G is abelian, then since G is also compact and connected by
assumption, it has to be a torus. Thus it is its own maximal torus. Hence
G ∼= U(1).

3 The non-abelian case

Note immediately that if G is not abelian, then dimG > 1 since one-dimensional
Lie algebras must be abelian.

Lemma 3.1. Let α be a one-parameter subgroup of G which is not periodic.
Then G contains a torus of dimension k > 1.
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Proof. The subgroup α(R) is a connected abelian subgroup. Then α(R) is a
compact, connected abelian group, and thus a torus. Assume the dimension of
the torus was k ≤ 1. If it were k = 0, then it were periodic, and if it were k = 1,
then α(R) would be a connected subgroup of α(R) ∼= U(1) which is dense, of
which the only example is U(1) itself, which would show that α was periodic.
A contradiction to the assumption.

3.1 Identifying G/T ∼= Sn−1

From now on set dimG = n and equip G with a bi-invariant Riemannian metric.
Such a metric exists, since G is assumed to be compact.

Let X ∈ LG and let s 7→ α(s) := exp(sX) be the one-parameter subgroup
tangent to X. Then by assumption and Lemma 3.1 α is periodic i.e. is has
compact image and of dimension 1 and thus is a 1-torus. On the other hand,
every 1-torus can be constructed that way. In other words, any one-parameter
group α must close up, and the images of the various one-parameter groups are
precisely the maximal tori of G.

Proposition 3.2. The adjoint representation of G on LG restricts to the unit
sphere (w.r.t. the bi-invariant Riemannian metric) in LG and the induced ac-
tion

Ψ : G → O(n) = Aut(Sn−1); Ψ(g) = Ad(g) (1)

is transitive. Here Sn−1 ⊆ LG denotes the unit sphere (w.r.t. the inner product
fixed on LG).

Proof. Fix g ∈ G. Since the Riemannian metric was assumed to be bi-invariant,
Ad(g) is an isometry on LG. Hence the adjoint representation restricts to
Sn−1 ⊆ LG.
Since X and −X generate the same one-parameter group, the action descends
to the projectivization P (LG) ∼= Sn−1 /{±1}; i.e. the pairs of antipodes in Sn−1

and since all maximal tori are conjugate to each other, the action is transitive on
P (LG). Thus, the action on Sn−1 has at most1 2 orbits. However, since these
orbits are compact, admitting 2 orbits would imply that Sn−1 is not connected,
which is not the case since n > 1. Hence the action can only have one orbit and
thus the action (1) is transitive.

Proposition 3.3. For a given X ∈ Sn−1 ⊆ LG as above, the map

ϕX : G/T → Sn−1 ⊆ LG; g 7→ Ad(g)X (2)

is a well-defined, G-equivariant bijection between compact homogeneous G-spaces.

Proof. Well-defined : Let t ∈ T . Then for any a ∈ R, using the naturality of the
exponential map,

exp(aAd(t)X) = c(t) exp(aX)︸ ︷︷ ︸
∈T

= exp(aX). (3)

1For example, one orbit could be the upper hemisphere, while the other is the lower hemi-
sphere, where the action on the lower hemisphere is dictated by the one on the upper in order
to respect the quotient.
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Differentiating both sides in s and evaluating at s = 0 gives Ad(t)X = X. Hence
for any t−1

1 t2 ∈ T we have

Ad(t−1
1 )Ad(t2)X = Ad(t−1

1 t2)X = X. (4)

That is, Ad(t1)X = Ad(t2)X.
Equivariant : Since G acts on G/T by left-multiplication and on Sn−1 ⊆ LG via
the adjoint representation, ϕX is equivariant.
G-spaces: By Proposition 3.2 the adjoint action on Sn−1 has a single orbit and
thus gives a G-space.
Injective: Assume Ad(g)X = Ad(h)X. Then Ad(h−1g)X = X. Then, for any
a ∈ R

c(h−1g) exp(aX) = exp(aAd(h−1g)X) = exp(aX). (5)

Since T = exp(RX), this implies that h−1g lies in Z(T ), which coincides with
T itself, since T is a maximal torus.
Surjective: Since the action Ψ is transitive, the map is surjective.

Corollary 3.4. The map ϕX is a diffeomorphism

G/T ∼= Sn−1 . (6)

Proof. By the Equivariant Rank Theorem (Lee, 2012, Thm. 7.25), as a bijective
G-equivariant map between G-spaces, ϕX is a diffeomorphism.

3.2 Characterizing the Weyl Group

Proposition 3.5. The image of the normalizer under the map ϕX is {X,−X}.
Thus the degree of T in N(T ) is [N(T ) : T ] = 2, W ∼= Z /2Z, and the non-trivial
element of W acts on T by orientation reversal.

Proof. Let g ∈ N(T ). Then, since T = exp(RX) there exists a a ∈ R such that

exp(Adg X) = c(g) exp(X)︸ ︷︷ ︸
∈T

= exp(aX). (7)

However, by (1) we conclude a = ±1. Thus, by Corollary 3.4 this means that T
has precisely 2 cosets in N . Thus [N(T ) : T ] = 2 and W ∼= Z /2Z. The action
of the non-trivial element n ∈ W on T is thus given by

c(n) exp(aX) = exp(aAd(n)X) = exp(−aX), a ∈ R . (8)

3.3 Deducing dim = 3 (topological argument)

Since T ∼= S1 and G/T ∼= Sn−1, their homotopy groups (at least in low degree)
are very tractable. We will thus make a homotopy theoretic argument for the
dimension of G. Recall that by (Bröcker und Tom Dieck, 2013, Thm. (4.3))

T
i−→ G

p−→ G/T (9)
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Figure 1: Illustration of i∗([γ]) = i∗([γ])
−1.

is a fibre bundle and therefore induces a long exact sequence in homotopy2

. . . → π2(G/T )
δ−→ π1(T )︸ ︷︷ ︸

∼=Z

i∗−→ π1(G)
p∗−→ π1(G/T ) → . . . (10)

where all homotopy groups are based at e and eT .

Proposition 3.6. Let [γ] ∈ π1(T ) be a generator of π1(T ). Then i∗([γ]) =
i∗([γ])

−1. In particular, i∗([γ]) ∈ π1(G) is of order 2.

Proof. Since G is connected and thus, as a manifold, also path-connected, there
is a path g• : [0, 1] → G such that g0 = e and g1 = n, where n ∈ G is an element
representing the non-trivial element in the Weyl group. By Proposition 3.5 we
have Adn X = −X. Let [γ] ∈ π1(T ) be a generator as above. Then

H : [0, 1]× [0, 1] → G; (a, s) 7→ gsγ(a)g
−1
s (11)

is a homotopy in G from H(·, 0) = γ to H(·, 1) = γ−1, which fixes H(0, ·) = e.
Hence γ and γ−1 are homotopic (relative to e) and thus represent the same
element in π1(G). Hence i∗([γ])

2 = i∗([γ])i∗([γ])
−1 = 1.

As a result of Proposition 3.6 the image i∗(π1(T )) ⊆ π1(G) is either isomorphic
to Z /2Z or 0. Therefore, the kernel of i∗ must be infinite, which, by the
exactness of the sequence, implies that π2(G/T ) is also infinite. Since G/T ∼=
Sn−1 and the homotopy groups of spheres in low degree and dimension are

2See (Hatcher, 2005, Sec. 4.2).
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known, this leaves only n = 3. It then follows furthermore that π1(G/T ) =
π1(Sn−1) = 0, and then, again by exactness, that i∗ is surjective. Therefore,
π1(G) is either isomorphic to Z /2Z or 0.

3.4 Concluding via coverings

We now know that G must be of dimension n = 3 and that the π1(G) is either
isomorphic to Z /2Z or 0. To conclude with a full classification we appeal to
the theory of covering spaces.3

Recall that G acts on LG via the adjoint representation as isometries w.r.t. the
bi-invariant inner product fixed in the beginning of the section; that is, Ψ, as
defined in (1), takes values in the Isom(S2) = O(3). More specifically, since G
is connected, its image has to lie in the connected component containing e. We
summarize:

Ψ : G → Isom(S2)0 = SO(3); g 7→ Ad(g). (12)

Proposition 3.7. The kernel of Ψ equals the center Z(G) of G and is therefore
discrete.

Proof. On the one hand, let g ∈ Z(G) and X ∈ LG. Then for any a ∈ R

exp(aAd(g)X) = c(g) exp(aX)︸ ︷︷ ︸
∈T

= exp(aX). (13)

Differentiating both sides in a and evaluating at a = 0 shows that g ∈ kerΨ.

On the other hand, assume g ∈ kerΨ. Since G is compact and connected, exp is
surjective4 and hence for any h ∈ G there is a Xh ∈ LG such that h = exp(Xh)
and thus

c(g)h = c(g) exp(Xh) = exp(Ad(g)︸ ︷︷ ︸
=idLG

Xh) = exp(Xh) = h, ∀h ∈ G. (14)

Thus g ∈ Z(G). Hence, since the center of a compact Lie group equals the
intersection of all its maximal tori5, which are 1-dimensional in our case, the
center is discrete.

Therefore, SO(3) is the quotient of G by a finite subgroup (which acts prop-
erly). Hence dim(SO(3)) = dimG = 3, Ψ is a submersion, and thus Ψ is a local
diffeomorphism.

Thus G must be a covering space of SO(3). Luckily, the fundamental group
of SO(3) is known to be Z /2Z, and thus, by standard covering space theory,
there are (up to covering space isomorphism) precisely two covering spaces (cor-
responding to the subgroups of Z /2Z, which are Z /2Z itself and 0). These are
the trivial covering SO(3) → SO(3) and the 2:1-covering SU(2) → SO(3). Thus
G must be isomorphic to either SU(2) or SO(3).

3See (Hatcher, 2005, Sec. 1.3).
4See (Bröcker und Tom Dieck, 2013, Thm. (2.2))
5See (Bröcker und Tom Dieck, 2013, Thm. (2.3) (iii)).
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