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Zusammenfassung

Ziel dieser Arbeit ist es, ein maßtheoretisches und funktionalanalytisches Gerüst eines
Differential- und Integralkalküls für unendlichdimensionale, topologische Vektorräume
aufzusetzen. Im einführenden Teil betrachten wir ein paar naive Ansätze und stellen
schnell fest, dass diese nicht zielführend sind. Anschließend geben wir Motivation aus Teil-
bereichen der Mathematik und ihren Grenzgebieten, insbesondere aus der konstruktiven
Quantenfeldtheorie, dem Malliavinschen Kalkül, der Finanzmathematik & stochastischen
partiellen Differentialgleichungen, sowie der Theorie großer Abweichungen.

Im zweiten Teil führen wir die Grundbegriffe von Maßen auf lokalkonvexen topologischen
Vektorräumen ein und befassen uns mit dem Problem der Wahl der ”richtigen” σ-Algebra.
Weiters definieren wir Gaußsche Maße und diskutieren den Satz von Fernique und seine
Konsequenzen, z.B. die Einbettung (E, τ)∗ →֒ Lp(E, µ). Anschließend definieren und
untersuchen wir den zu einem Gaußschen Maß assoziierten Cameron–Martin-Raum und
betrachten die Beispiele des Rn und des klassischen Wienerschen Raumes. Im letzten
Abschnitt des Kapitels beweisen wir die Sätze von Cameron und Martin und fassen die
Theorie für separable Frechet-Räume zusammen.

Im dritten Teil untersuchen wir den in Abschnitt 1.2 angesprochenen dualen Ansatz, in
welchem man von einer formalen Dichte bezüglich eines (hypothetischen) Lebesgue-Maßes
ausgeht und den zugehörigen funktionalanalytischen Rahmen konstruiert. Abschließend
wenden wir Teile der Theorie auf eine Verallgemeinerung des Satzes von Schilder aus der
Theorie der großen Abweichungen an.

Abstract

The goal of this thesis is to set up a measure theoretic and functional analytic framework
for a differential and integral calculus on infinite-dimensional topological vector spaces
(TVSs). In the introductory part, we make some naive approaches and immediately see
why they are doomed to fail. We give further motivation from pure mathematics, physics,
and financial economics.

In the second part, we will introduce the basic notions of measures on locally convex
TVSs and consider the problem of choosing “the right” sigma-algebra. We then define
Gaussian measures and discuss the celebrated Theorem of Fernique and its consequences,
e.g. the embedding (E, τ)∗ →֒ Lp(E, µ). After that we study the associated Cameron–
Martin space and consider the example of finite-dimensional real space Rn and the classical
Wiener space. In the last part of the chapter we state and prove the Theorems of Cameron
and Martin and summarize the theory in its most natural setting, separable Frechet spaces.

Finally, we consider the dual viewpoint, mentioned in section 1.2, in which we start from
a formal density w.r.t. a (hypothetical) Lebesgue measure and subsequently develop the
corresponding functional analytic framework. In the final chapter we employ parts of
the theory to obtain a generalized version of the classical Theorem of Schilder from the
Theory of Large Deviations.
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1 Introduction

Unless explicitly stated otherwise, all vector spaces are defined over R, locally convex
topological vector spaces are assumed to be Hausdorff, and finite-dimensional vectors are
column vectors. Frequently used notation and acronyms can be found in appendix B.

1.1 Naive Considerations

The bare minimum for a full-fledged differential and integral calculus is a vector space, a
topology, and a sigma-algebra with a measure on it. In the finite-dimensional case, there
are canonical choices for each of these: the n-dimensional standard real space, the topology
induced by the 2-norm (or any norm, for that matter), and the Borel sigma-algebra with
the n-dimensional Lebesgue measure.

Setting Space Topology Measure

Classical R induced by | · | (B(R), λ)
Multidimensional Rn induced by ‖ · ‖ (B(Rn), λn)

Harmonic G loc. compact & Hausdorff (B(G), µ)

Inf. dimensional E Normed, Frechet, loc. convex, ..., TVS (?, ?)

Up to this point, this arrangement can be seen as a special case of the standard setting
of harmonic analysis – a locally compact and Hausdorff topological group, together with
the Borel sigma-algebra, and the Haar measure. Under the stated assumptions about the
space and the topology, a Haar measure, left or right, always exists and is unique (up to
a multiplicative constant). Furthermore, the measure has the crucial (and quasi-defining)
property of translation-invariance, i.e.

µ(·) = µ(· − g), ∀g ∈ G.

It generalizes the n-dimensional Lebesgue measure. The naive attempt of applying this
theory to our setting of infinite-dimensional spaces fails because infinite-dimensional
normed spaces are never locally compact, which follows immediately from Riesz’s Lemma.
We could try using a weaker topology, in the hopes of finding more compact sets and
achieving local compactness. This does not work. Not only does not every TVS have a
canonical choice for a weaker topology such as the weak* topology (as not every TVS has
a pre-dual), but being Hausdorff and locally compact already implies finite-dimensionality
for a general TVSs. This leaves the final option of trying to make constructions by hand.
However, this fails as well, as the following theorem shows.

Theorem 1.1. Let (E, ‖ · ‖) be a normed space with dimE =∞. Then there is no non-
trivial, translation-invariant, σ-additive Borel measure µ on (E, ‖ · ‖) s.t. µ[Bε(0)] < ∞
for all ε > 0.
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Proof. Since µ is non-trivial, there exists an A ∈ B(E) s.t. µ(A) > 0. Hence there exists
an N ∈ N s.t. µ[BN(0)] > 0 because otherwise

0 < µ(A) ≤ µ(E) = µ

[ ∞⋃

n=1

Bn(0)

]
= lim

n→∞
µ
[
Bn(0)

]
= 0.

Assume w.l.o.g. N = 1. Since dimE = ∞, by Riesz’s Lemma, there exists a sequence
(xn)n∈N ⊆ E with ‖xn‖ = 4 for every n ∈ N and ‖xn − xm‖ ≥ 3 for every n 6= m. Thus
for every n 6= m we have

B1(xn) ∩ B1(xm) = ∅ and B1(xn) ⊆ B5(0).

Hence by σ-additivity and translation-invariance:

∞ =
∞∑

n=1

µ[B1(xn)]︸ ︷︷ ︸
=µ[B1(0)]>0

= µ

[ ∞⋃

n=1

B1(xn)

]
≤ µ[B5(0)].

A contradiction to µ[Bε(0)] <∞ for every ε > 0.

1.2 Constructive Quantum Field Theory

See [17, Chap. 20]. In the physics literature on quantum field theory (QFT) one often
finds expressions of the form

1

β

∫

E

F (φ) exp
{ i
~
S(φ, 0, t)

}
Dφ

where E is some space of paths or fields, F a functional on E, S is an action functional,
β ∈ R a normalization constant, and D is the “infinite-dimensional Lebesgue measure on
E”. We use quotation marks because, as shown in Theorem 1.1, the latter does not make
any sense. The challenge is thus to make rigorous meaning out of the term

1

β
exp

{
i

~
S(φ, 0, t)

}
Dφ,

against which F is integrated, which is formally (!) a measure on a space E defined by a

density 1
β
exp

{
i
~
S(φ, 0, t)

}
with respect to D.

Let’s consider an explicit example: In his thesis, R. Feynman [11] proposed a formula for

the time evolution operator e
−it
~

Ĥ applied to the wave function ψ of a particle as

(
e

−it
~

Ĥψ
)
(x0) =

1

β

∫

paths with
x(0)=x0

ψ
(
x(t)

)
exp

{
i

~

∫ t

0

[
m

2
|ẋ(s)|2 − V

(
x(s)

)]
ds

}
Dx (1.1)

in which case

S(x, 0, t) :=
∫ t

0

[
m

2
|ẋ(s)|2 − V

(
x(s)

)]
ds
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is the action functional with density m
2
|ẋ|2−V

(
x(·)

)
, which is nothing but the Lagrangian

L = T−V of the classical trajectories, and D the “infinite-dimensional Lebesgue measure”
on a space of paths. Applying a Wick rotation t 7→ −it, i.e. passing from a problem in
Minkowski space to one in Euclidean space, makes the exponent real and allows us to
rewrite (1.1) as

∫

paths with
x(0)=x0

ψ
(
x(t)

)
exp

{
− 1

~

∫ t

0

V
(
x(s)

)
ds

}
1

β
exp

{
− 1

~

∫ t

0

m

2
|ẋ(s)|2ds

}
Dx

︸ ︷︷ ︸
dµ(x)

.

Now, the bilinear form in the kinetic energy part makes the latter factor look like a (real-
valued) Gaussian density, suggesting that it is at least plausible that we can rigorously
interpret µ as a (Gaussian) probability measure on Cx0([0, t],R

n) and subsequently re-
cover the original problem by analytic continuation. Indeed, one can show the following
theorem.

Theorem 1.2. (Feynman–Kac Formula, [17, Thm. 20.3]) Let V : R3 → R s.t. V = f+b
with f ∈ L2(R3) and b ∈ L∞(R3). Then for any x0 ∈ R3

(
e

−t
~
Ĥψ
)
(x0) =

∫

Cx0 ([0,t],R
3)

ψ
(
x(t)

)
exp

{
− 1

~

∫ t

0

V
(
x(s)

)
ds

}
dµσ

x0
(x)

where µσ
x0

is the Wiener measure on Cx0([0, t],R
3) with variance σ := ~

m
.

Another example is φ4 theory, where (the Minkowski version of) a path integral of the
form

1

β

∫

Fn

F (φ) exp

{
− 1

~

∫

Rn

β1‖∇φ(x)‖2 + β2φ(x)
2 + β3φ(x)

4dx

}
Dφ

is considered. Here, β1, β2, β3 ∈ R are constants and F is some functional on a space of
fields Fn. Many more examples can be found in [25].

Takeaway Many interesting measures are given as formal expression on some space
of (generalized) functions; which space might not be clear a priori. The Feynman–Kac
formula solves the prototypical case and suggests Gaussian measures as the rigorous in-
terpretation of those expressions.

1.3 Malliavin Calculus

See [13]. Let (C0[0, 1], H
1
0 [0, 1], µ) be the classical Wiener space as defined in section 4.1

and let

W
(
h̃
)
: C0[0, 1]→ R, ω 7→

∫ 1

0

h(s)dω(s)
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denote the Paley–Wiener integral1 for h ∈ L2[0, 1] and h̃(t) :=
∫ t

0
h(s)ds ∈ H1

0 [0, 1]. We
would like to define a differential calculus for functionals of Brownian motion, i.e. for
measurable functions C0[0, 1]→ R which are defined only µ-a.s. So, for example,

St = S0 exp

{(
µ− σ2

2

)
t+ σBt

}
= S0 exp

{(
µ− σ2

2

)
t+ σ

∫ 1

0

1[0,t](s)dBs

}

at a fixed time t > 0.2 Such a differential operator should extend the action

W
(
h̃
)
7→ h̃, h̃ ∈ H1

0 [0, 1]

to more general functionals F : C0[0, 1]→ R. In a sense, the operator should differentiate
F w.r.t. Bt. Akin to the weak derivative on an open interval (a, b) ⊆ R, we would like to do
so by defining such an operator on a spaceD0 of well-behaved functions, yielding a closable
operator, and then extending it to a closed operator, defined on a larger domain Dmax.
In the case of the former, the derivative operator φ 7→ φ′ is defined on D0 := C∞

c (a, b),
mapping to L2(a, b), and then extended to Dmax = H1(0, 1), giving the weak derivative
defined on the first Hilbert–Sobolev space. For the Malliavin derivative we choose

D0 :=
{
F := p

(
W (h̃1), . . . ,W (h̃n)

)
: p ∈ R[x1, . . . , xn], h̃1, . . . , h̃n ∈ H1

0 [0, 1], n ∈ N
}

i.e. the space of polynomial functions evaluated after Paley–Wiener integrals. The def-
inition of the Frechet derivative (which applies to well-behaved and in particular ev-
erywhere defined functionals) suggests that the right notion of directional derivative
∂ϕF : C0[0, 1]→ R of F in the direction of ϕ ∈ C0[0, 1] is

d

dε
F
(
ω + εϕ

)
= lim

ε→0
ε 6=0

|F (ω)− F (ω + εϕ)|
ε

, ω ∈ C0[0, 1]. (1.2)

evaluated at ε = 0. However, recall that W (h̃i) is defined as a µ-a.s. limit. Hence

W (h̃i) and thus F is only well-defined on a set Dom(F ) ⊆ C0[0, 1] with µ
[
Dom(F )

]
= 1.

However, by the classical Cameron–Martin Theorem (which will be presented in a more
general form in section 3.4), unless ϕ lies precisely in H1

0 [0, 1],

µ
[
Dom

(
F (·+ εϕ)

)]
= µ

[
Dom(F )− εϕ

]
= µεϕ

[
Dom(F )

]
= 0.

This makes (1.2) µ-a.s. ill-defined and thus not suited for our purpose. A better approach
is to only consider derivatives in Cameron–Martin directions:

1The Paley–Wiener integral as we define it here is sometimes denoted W (h), where h ∈ L2[0, 1] as
defined above. The difference is merely notational, since h 7→ h̃ is a linear isometric isomorphism from
L2[0, 1] to H1

0 [0, 1]. In subsection 3.3.3 we will realize W as a map H1
0 [0, 1] → L2(C0[0, 1]), i.e. from

the Cameron–Martin space into the space of square integrable functionals on C0[0, 1], which justifies the
notation used here.

2It is the (unique and strong) solution to the SDE

dSt = St

(
µ dt+ σ dBt

)

and models the price of an underlying in the Black–Scholes model at a fixed time t > 0 where µ ∈ R,
σ > 0. See section 1.4
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∂
h̃
F (ω) =

d

dε
F (ω + εh̃), h̃ ∈ H1

0 [0, 1].

Restricting to hi := 1[0,ti] in the definition of F and applying the chain rule twice gives

n∑

i=1

∂ip
(
W
(
1̃[0,t1]

)
, . . . ,W

(
1̃[0,tn]

)) ∫ ti

0

h(s)ds = 〈DF, h〉L2[0,1] = 〈D̃F , h̃〉H1
0 [0,1]

,

where we define

DF =
n∑

i=1

∂ip
(
W
(
1̃[0,t1]

)
, . . . ,W

(
1̃[0,tn]

))
1[0,ti], t1, . . . , tn ∈ [0, 1].

This then naturally extends to

DF =
n∑

i=1

∂ip
(
W
(
h̃1
)
, . . . ,W

(
h̃n
))
hi, h1, . . . , hn ∈ L2[0, 1],

which finally gives DF as a linear operator C0[0, 1] → L2[0, 1]. Comparing this to the
derivative operator in finite dimensions, it suggests that L2[0, 1] (or equivalently H1

0 [0, 1])
should take the role of a (“stochastic”) tangent space to points in C0[0, 1].

Takeaway Constructions that rely on a Gaussian measure are deeply connected to the
Cameron–Martin space. While Gaussian measures on finite-dimensional spaces are quasi-
invariant w.r.t. translation in any direction (i.e. translation yields a possibly different,
but equivalent measure) on infinite-dimensional spaces, they have a strong tendency to
become mutually singular, which has to be taken into account.

1.4 Mathematical Finance & Stochastic PDE

See [24] and [26]. Let St denote the price of a stock S at time t ≥ 0. If the price at t0 is
known, then the price at a later time t0 + T can be approximated by

St0+T = St0 + TµSt0 ,

where µ is the expected return of S, which can be rewritten as

St0+T − St0

T
= µSt0 .

Letting T → 0, this leads to a simple model of the stock price via the ODE

dSt

dt
= µSt. (1.3)

However, plotting solutions to this equation yields figure 2, which does not coincide with
what we can observe on the stock market. Firstly, this model suggests that (St)t≥0 is
deterministic, i.e. that the evolution of the price can be predicted with certainty. This is
not the case. Secondly, it implies that (St)t≥0 is smooth, which is also not accurate. The
reason for these two deficiencies of the model is that we have assumed µ to be the return
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Figure 1: Sample of white noise.

Figure 2: Solution to (1.3). Figure 3: Solution to (1.4).

of S, which stays perfectly constant over time and is deterministic. A more accurate
assumption is that µ is close to constant, but nonetheless continuously influenced by
some noise (ηt)t≥0 in the market. Empirically measuring these disturbances, we observe
that for any s, t ≥ 0 s.t. s 6= t the random variables ηs and ηt are independent and have
distribution N (0, 1). Such a family of random variables is called white noise.

Introducing a parameter σ > 0 which controls the volatility of the stock S yields σηt ∼
N (0, σ2) and the ODE becomes

dSt

dt
= (µ+ σηt)St. (1.4)

Plotting solutions to the above equation leads to figure 3. The graph looks very rough3

3Indeed, solutions to (1.4), called geometric Brownian motion, are almost surely nowhere differ-
entiable.
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and suggests that it cannot satisfy a differential equation in the classical sense.4 One way
to make sense out of (1.4) is the Itô interpretation. It asserts that a stochastic process
(St)t≥0 is a solution to (1.4) if it is adapted and satisfies

St = S0 +

∫ t

0

µSsds+

∫ t

0

σSsdBs

where, heuristically speaking, (Bt)t≥0 is some stochastic process whose derivative is ηt,
and, precisely speaking, (Bt)t≥0 is standard Brownian motion. More generally, stochastic
ODEs have the form

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, X0 = ξ,

where b : [0,∞)× Rn → Rn, σ : [0,∞)× Rn → Rn×d, (Bt)t≥0 is d-dimensional Brownian
motion, ξ is an n-dimensional random vector which is independent of (Bt)t≥0, and (Xt)t≥0

is a (stochastic) process to be solved for. In this more general context, (Bt)t≥0 should
be a stochastic process “whose derivative is white noise with values in whatever space
s.t. σ(t,Xt)dBt takes values in the space in which Xt(ω) lies”; in this case the white
noise should take values in Rd s.t. σ(t,Xt)dBt lies in Rn, which is where Xt(ω) lies.
This situation can still be treated with the conventional tools from standard stochastic
analysis. Namely, define d-dimensional Brownian motion as Bt = (B

(1)
t , . . . , B

(d)
t ) ∈ Rd

for every t ≥ 0 where (B
(1)
t )t≥0, . . . , (B

(d)
t )t≥0 are independent 1-dimensional Brownian

motions. However, now consider the case of a stochastic PDE, for example

dXt = (∆−m2)Xt dt+ dBt.

Here, the space in which Xt(ω) lies is a function space, and thus (Bt)t≥0 should be
Hilbert/Banach space valued, which needs to be rigorously defined and cannot be treated
with the classical tools.

Takeaway For the purposes of ODEs and SDEs, Brownian motion is a way to deal
with white noise. If the white noise takes value in R or Rn, then the classical theory is
sufficient. With a view towards white noise with values in more general topological vector
spaces, it is natural to study Brownian motion abstractly.

1.5 Large Deviations

See [7] and see chapter 5 for brief summary of the main idea of Large Deviations.
Let (Xn)n∈N be a sequence of Rn-valued iid random variables with X1 ∼ N (0, 1n×n). Then
by Cramer’s Theorem, the sequence (µN)N∈N, defined by

µN := L
(

1

N

N∑

n=1

Xn

)
, ∀N ∈ N,

satisfies a large deviation principle with good rate function

4In fact, the process (ηt)t≥0 we hypothesized before does not exist in the sense that a generic realization(
ηt(ω)

)
t≥0

is not a measurable function [19, Exmp. 1.2.5.] Hence the right hand side of equation (1.4) is

not measurable, and thus (St)t≥0 cannot be differentiable in the classical sense.



8 2 MEASURES ON LOCALLY CONVEX SPACES

I(x) =
1

2
‖x‖2Rd , x ∈ Rn.

This suggests that the Large Deviations are controlled by the Euclidean norm of x ∈ Rn.
However, the true nature becomes apparent when we consider a general covariance matrix
Σ ∈ Rd×d that may differ from the identity matrix 1d×d. Consider a sequence as above
but with X1 ∼ N (0,Σ). Then (µN)N∈N still satisfies a large deviation principle, but I
takes the form

I(x) =
1

2
〈x,Σ−1x〉Rn , x ∈ Rn.

What we notice is that it is not the Euclidean norm that is important, but the norm
weighted by Σ−1, which is the Cameron–Martin norm. A similar result is true for Gaussian
measure on infinite-dimensional spaces (see chapter 5). In fact, there we will see that I
is finite only on the Cameron–Martin space itself, not on the entire space.

Takeaway Properties of Gaussian measures largely depend only on the properties of
their Cameron–Martin space, and not on the entire space they are defined on. In the
words of L. Gross:

“However, it only became apparent with the work of I. E. Segal, dealing with the
normal distribution on a real Hilbert space, that the role of [the Cameron–Martin
space] was indeed central, and that in so far as analysis on [the entire space] is
concerned, the role of [the entire space] itself was auxiliary for many of Cameron
and Martin’s Theorems, and in some instances even unnecessary.” [15]

2 Measures on Locally Convex Spaces

2.1 Choice of Sigma Algebra

As opposed to the finite-dimensional situation, it is not clear what the “correct” sigma-
algebra on E should be.5 Various concepts of the theory of Gaussian measures, such
as their very definition, are built upon continuous linear functionals. In particular, any
sensible choice of sigma-algebra on (E, τ) should at least make those measurable. In other
words, the sigma-algebra A on E should be chosen (as weak as possible) with the property
that (E, τ)∗ →֒ L0(E,A) is well-defined.

Definition 2.1. Let (E, τ) be a locally convex TVS, A ∈ B(Rn) a Borel set, and
f1, . . . , fn ∈ (E, τ)∗. Then

CA,f1,...,fn :=
{
x ∈ E :

(
f1(x), . . . , fn(x)

)
∈ A

}
= (f1, . . . , fn)

−1(A)

is called a cylinder set, A is called its basis, and f1, . . . , fn its generators.

5The truth is rather that on Rn all of the reasonable choices simply coincide.
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Proposition 2.2. Let (E, τ) be a locally convex TVS. Then the collection of all cylinder
sets of (E, τ), i.e.

C(E) :=
{
CA,f1,...,fn : n ∈ N, A ∈ B(Rn), f1, . . . , fn ∈ E∗

}

forms an algebra of sets (although not necessarily a sigma-algebra).

Proof. We show
{
∁,∩

}
-stability:

Let A,B ∈ B(Rn) and f1, . . . , fn, g1, . . . , gm ∈ E∗ be arbitrary. Then

C∁
A,f1,...,fn

=
{
x ∈ E :

(
f1(x), . . . , fn(x)

)
∈ A∁

}
= CA∁,f1,...,fn

∈ C(E)
and

CA,f1,...,fn ∩ CB,g1,...,gm =
{
x ∈ E :

(
f1(x), . . . , fn(x)

)
∈ A,

(
g1(x), . . . , gm(x)

)
∈ B

}

=
{
x ∈ E :

(
f1(x), . . . , fn(x), g1(x), . . . , gm(x)

)
∈ A× B

}

= CA×B,f1,...,fn,g1,...,gm ∈ C(E).

Proposition 2.3. Let (E, τ) be a locally convex TVS. Then the sigma-algebra generated
by C(E) coincides with the smallest sigma-algebra making all f ∈ E∗ measurable, i.e.
σ(C(E)) = σ(C0(E)) where

C0(E) :=
{
f−1(A) : A ∈ B(R), f ∈ E∗

}
.

σ(C(E)) will thus also be called the weak sigma-algebra.

Proof. We have σ(C0(E)) ⊆ σ(C(E)) by definition. To show the other inclusion, note
that σ(C(E)) is the smallest sigma-algebra making all the functionals (f1, . . . , fn) with
f1, . . . , fn ∈ E∗ measurable. Hence it is sufficient to show that σ(C0(E)) makes those
measurable as well. So let F = (f1, . . . , fn) be as above. Then by the universal property
of the product sigma-algebra on Rn (which coincides with B(Rn)) the function F is mea-
surable if and only if for every 1 ≤ i ≤ n the function fi is measurable. This is the case
by assumption of σ(C0(E)). Hence σ(C0(E)) is a sigma-algebra making all functionals of
the form (f1, . . . , fn) measurable, and thus contains the smallest sigma-algebra with this
property, which is σ(C(E)).
Remark 2.4. Note that, as opposed to C(E), the family C0(E) is not ∩-stable. In the
proof of ∩-stability of Proposition 2.2 the sets A and B lie in Rn and Rm respectively, but
A×B ⊆ Rn+m. Hence C(E) is more suitable for Dynkin-type arguments (see for example
the proof of Theorem 2.5).

Back to the problem of choice of sigma-algebra. We have already established that the
continuous linear functionals should be measurable. Is that sufficient?

On the one hand, one would like to be able to make arguments as in Theorem 2.15,
by testing properties of µ against bounded linear functionals on E. This suggests the



10 2 MEASURES ON LOCALLY CONVEX SPACES

sigma-algebra σ(C(E)). On the other hand, with this choice, there may be continuous
(non-linear) functionals which are not measurable. To make those measurable as well we
would choose the Baire sigma-algebra σ

(
E;C(E, τ)

)
. And yet, neither of the two may

coincide with the Borel sigma-algebra σ(τ), which is arguably the natural choice all along.
To summarize, we have the following inclusions:

σ(C(E)) = σ(E;E∗) ⊆ σ
(
E;C(E, τ)

)
⊆ σ(τ) (2.1)

denoting in ascending order

- σ(C(E)) the smallest sigma-algebra containing C(E) (which coincides with σ(E;E∗)
by Proposition 2.3),

- σ
(
E;C(E, τ)

)
the smallest sigma-algebra making all continuous (possibly non-linear)

functionals on (E, τ) measurable,

- σ(τ) the Borel sigma-algebra on (E, τ).

Fortunately though, not only for finite-dimensional TVS, but for separable Frechet spaces
all four coincide and even more is true:

Theorem 2.5. Let (E, τ) be separable Frechet. Then for any family F ⊆ E∗ that separates
points we have

σ(E;F ) = σ(C(E)) = σ
(
E;C(E, τ)

)
= σ(τ) (2.2)

Moreover, there exists a countable sub-family F0 ⊆ F which also separates points, i.e. for
any x 6= y ∈ E there is a f0 ∈ F s.t. f0(x) 6= f0(y), and for which σ(E;F0) coincides
with (2.2).

Proof. We want to show σ(τ) ⊆ σ(E;F0). Then the nesting in (2.1) and F0 ⊆ F ⊆ E∗,
and hence σ(E;F0) ⊆ σ(E;F ) ⊆ σ(C0(E)), imply the result. A family F ⊆ E∗ always
exists since (E, τ) is assumed to be Frechet;6 e.g. take F = E∗.

(1) Firstly we will show that there exists a countable subfamily F0 ⊆ F that also separates
points. For every f ∈ F define

Uf :=
{
(x, y) ∈ E × E : f(x) 6= f(y)

}
⊆ E × E,

which is the set of points x, y ∈ E which are separated by f . As the complement of
the pre-image of {0} under the continuous function (x, y) 7→ f(x) − f(y), this set is
open. Since (E, τ) is separable and metrizable, so is (E ×E, τ ⊗ τ), which is thus second
countable. Let {Vn}n∈N denote a countable basis of (E × E, τ ⊗ τ). Then

⋃

f∈F

Uf =
⋃

f∈F

∪∞n=1Vf,n =
⋃

k∈N

Vk =
⋃

fk∈F0

Ufk . (2.3)

For the second equality, choose a re-indexing of F × N by N - this is possible since we
have a countable basis. In the third equality, define F0 by choosing for each k ∈ N a

6See [31, Kor. VIII.2.13.].
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functional fk ∈ E∗ s.t. Vk ⊆ Ufk - this is possible because, by construction, every Vk is a
subset of Uf for some f ∈ E∗. Formula (2.3) tells us that the set of points separated by F
(which is all of E) agrees with the set being separated by F0. Thus F0 also separates points.

(2) Let
{
Br(q) : q ∈ Q, r ∈ Q+

}
be the usual countable basis of the standard topology

on R. Then

E :=
{
f−1
(
Br(q)

)
: q ∈ Q, r ∈ Q+, f ∈ F0

}

separate points in E, i.e. for any x 6= y ∈ E there is a A ∈ E s.t. x ∈ A and y 6∈ A. To
see this, let x 6= y ∈ E and let f ∈ F0 s.t. f(x) 6= f(y). Then choose q ∈ Q, r ∈ Q+ s.t.

∣∣q − f(x)
∣∣ < 1

4

∣∣f(x)− f(y)
∣∣ and

1

4

∣∣f(x)− f(y)
∣∣ < r <

1

2

∣∣f(x)− f(y)
∣∣.

Then x ∈ f−1
(
Br(q)

)
but y 6∈ f−1

(
Br(q)

)
.

(3) Choose an indexing of E by N and define the function

g(x) =
∞∑

n=1

2−n
✶
f−1
(
Br(q)

)(x), x ∈ E

as a point-wise limit. Since the sets of E separate points, the function is injective (if
g(x) = g(y) then x and y must lie in the exact same sets of the form f−1

(
Br(q)

)
- a

contradiction to separation). Since the f ∈ F0 are continuous and g is a point-wise limit
of indicator functions on pre-images of f , the function is σ(τ)−B(R)-measurable and also
σ(E;F0)− B(R)-measurable.

(4) Let B ∈ σ(τ) be arbitrary. Then we show B ∈ σ(E;F ). By a Theorem of Lusin–Suslin
[21, Chap. 15, Thm. 15.1], since g is Borel measurable between Polish spaces and injective,
g(B) ∈ B(R). Note that this is not true for a general measurable g; the assumption of
injectivity and thus of E separating points is needed here. Thus, since g is injective, B
equals g−1

(
g(B)

)
, which lies in σ(E;F0) because g is σ(E;F0) − B(R)-measurable. We

conclude σ(τ) ⊆ σ(E;F0), which completes the proof.

The above theorem is not true for general locally convex TVSs. Consider the following
example:

Example 2.6. Let R[0,1] be the set of real-valued functions on the unit interval [0, 1]
equipped with the locally convex topology τ induced by the functionals {evt : t ∈ [0, 1]},
i.e. with the usual product topology. On the one hand, since τ is Hausdorff, {0} is
closed and thus Borel-measurable. Hence {0} ∈ σ(τ). On the other hand, σ(C(R[0,1])) is
contained in the sigma-algebra consisting of sets of the form

Ξ
k∈N

(
Ξ
j∈N

(
. . . Ξ

i∈N
Ai

)
j

)
k

where Ξ ∈ {∪,∩} and Ai ∈ C(R[0,1]). But
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{0} =
⋂

t∈[0,1]

ev−1
t

(
{0}
)
,

which is not of the form above, since it is an uncountable intersection. Hence σ(τ) 6=
σ(C(R[0,1])). While R[0,1] is separable, it is not Frechet. This can be seen for example by
noting that R[0,1] is not first countable.

2.2 Momenta

Akin to the finite-dimensional theory, the (first few) moments of a measure carry a lot of
information about it. We will see that for Gaussian measures, the first two momenta are
enough to characterize it. A naive definition of the mean mµ of a measure µ would be an
element of E s.t.

mµ =

∫

X

xdµ(x).

However, as opposed to measures on R, this integral is not in the sense of Lebesgue, but
in a (generalized) sense of Bochner - a crucial difference. Instead, we make the following
definition, which also generalizes the mean of a measure on Rn.

Definition 2.7. Let (E, τ) be a locally convex TVS and µ a measure on σ(E;E∗). Then
define the mean mµ : E∗ → R via

mµ(f) :=

∫

E

f(x)dµ(x), ∀f ∈ E∗

and the covariance form qµ : E∗ × E∗ → R via

qµ(f, g) :=

∫

E

[
f(x)−mµ(f)

][
g(x)−mµ(g)

]
dµ(x), ∀f, g ∈ E∗.

If it is clear from the context we will just write m and q. If mµ = 0, then µ is called
centred. If there exists a non-zero f ∈ E∗ s.t. q(f, f) = 0, then µ is called degenerate.
If q is non-degenerate, then it induces a norm ‖ · ‖q defined by

√
q(·, ·).

Remark 2.8. If every f ∈ E∗ is 1-integrable, then m is well-defined and an element of the
algebraic dual space (E∗)′ of E∗, which assigns to every f its expected valued in the usual
sense, i.e. m(f) = E(f). However, it is a priori not clear in which sense and whether at
all m is continuous and when m is representable as an evaluation functional eva for some
a ∈ E - in general (assuming the continuum hypothesis) neither is true (see [2, Thm.
2.12.2.]). A failure of mµ corresponding to an element in E is somewhat pathological -
think of the Strong Law of Large Numbers of Ranga Rao 5.2 - and will be avoided from
section 3.3 onwards.

Remark 2.9. The covariance form qµ, if it exists, is positive semi-definite, symmetric and
bilinear; and as such it is uniquely determined by its values q(f, f) for any f ∈ E∗, since
for any f, g ∈ E∗

q(f, g) =
1

2

(
q(f + g, f + g)− q(f, f)− q(g, g)

)
.



2.2 Momenta 13

Since q is a bilinear form, it is representable by a linear operator Cµ : E∗ → (E∗)′ via

∀f, g ∈ E∗ : [Cµ(f)](g) = q(f, g).

The operator Cµ is referred to as the covariance operator of µ. When there is no risk
of confusion we will just write C. Similar to the case of m it is natural to ask whether q
is continuous and when C is given by evaluations, i.e. when C : E∗ → E ⊆ (E∗)′. The
continuity and representability of m and C will be discussed in subsection 3.2.3.

Finite-dimensional case: For E = Rn, we have (Rn)∗ ≃ Rn via

〈

x1
...
xn


 , ·

〉
7→



x1
...
xn


 ,

and also
(
(Rn)∗

)′ ≃ Rn∗∗ ≃ Rn via

〈
·,



x1
...
xn



〉
7→
〈
·,



x1
...
xn



〉
7→



x1
...
xn


 .

Hence the mean of a measure µ on Rn is an element m ∈ Rn s.t. for every y ∈ Rn

〈y,m〉 =
∫

Rn

〈y, x〉dµ(x) =
n∑

i=1

yi

∫

Rn

xidµ(x) =

〈
y,

∫

Rn

xdµ(x)

〉
.

Hence

m =




∫
Rn x1dµ(x)

...∫
Rn xndµ(x)


 .

For the covariance form we have for any x, y ∈ Rn

q(〈x, ·〉, 〈y, ·〉) =
∫

Rn

[
〈x, z〉 −m

(
〈x, ·〉

)][
〈y, z〉 −m

(
〈y, ·〉

)]
dµ(z)

=
n∑

i,j=1

∫

Rn

[
xizi − ximi

][
yjzj − yjmj

]
dµ(z)

=
n∑

i,j=1

xiyj

∫

Rn

[
zi −mi

][
zj −mj

]
dµ(z)

= 〈x,Σy〉,

where Σ is the usual covariance matrix of the Gaussian measure µ defined by

Σi,j =

∫

Rn

[
zi −mi

][
zj −mj

]
dµ(z), 1 ≤ i, j ≤ n,
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or, if we interpret µ as the distribution of a random variable Z : Ω→ Rn,

Σi,j = E
[
Zi − E(Zi)

][
Zj − E(Zj)

]
, 1 ≤ i, j ≤ d.

We see that in the finite-dimensional case m and q are continuous and both are repre-
sentable as evaluations in the sense described above. The covariance operator C coincides
with the usual covariance matrix Σ after the canonical identification of Rn with its dual.

The above situation can be generalized to Banach spaces.

Proposition 2.10. Let (E, ‖ · ‖E) be a Banach space and µ a measure on σ(E;E∗). If
the mean exists in the sense of Bochner, i.e. if x 7→ x is integrable, then mµ lies in the
continuous dual of E∗ and is representable by a :=

∫
E
xdµ(x).

Proof. To see this, note that linear operators can be pulled inside Bochner integrals.
Hence for any f ∈ E∗ we have

eva(f) = f(a) = f

(∫

E

x dµ(x)

)
=

∫

E

f(x) dµ(x) = m(f).

Since E∗ separates points, a ∈ E is unique with this property.

2.3 Characteristic Functional

Harmonic analysis in the sense of Pontryagin takes place on locally compact Hausdorff
groups. We are not in this setting. However, under some assumptions, some theorems
can be recovered. In particular, finite measures on σ(E;E∗) and also Radon measures on
σ(τ) are characterized by their Fourier transform, justifying the name of characteristic
functional.

Definition 2.11. Let (E, τ) be a locally convex TVS and µ a finite signed measure on
σ(E;E∗). Then µ̂ : E∗ → C, defined by

µ̂(f) :=

∫

E

exp
[
if(x)

]
dµ(x), f ∈ E∗,

is called the characteristic functional or Fourier transform of µ. For E = Rn this
coincides with the usual Fourier transform of µ in the distributional sense. The Fourier
transform describes a linear operator from the space M

(
E, σ(E;E∗)

)
of finite signed

measures into the space of complex-valued functionals on E∗.

The integral in the above definition is well-defined since the integrand is bounded by 1
and µ is assumed to be finite. Note also that µ̂ is non-linear except for trivial cases.

Proposition 2.12. Let (E, τ) be a locally convex TVS, µ a finite signed measure on
σ(E;E∗), and µ̂ its characteristic functional. Then the following are true:

1. |µ̂(f)| ≤ |̂µ|(0) = |µ|(E) for any f ∈ E∗. Hence µ̂ is bounded, and bounded by 1 if µ
is a probability measure.

2. µ̂(f) = µ̂(−f) for any f ∈ E∗.
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3. If µ is tight, then µ̂ is continuous w.r.t. the topology of compact convergence.

4. If (E, τ) is a separable Banach space, then µ̂ is continuous w.r.t. the operator norm
topology.

5. If µ ≥ 0, then µ̂ is positive definite, i.e. for any f1, . . . , fn ∈ E∗, a1, . . . , an ∈ C:

n∑

i,j=1

µ̂(fi − fj)aiaj ≥ 0.

Proof. 1. Let f ∈ E∗ be arbitrary. Then

|µ̂(f)| =
∣∣∣∣
∫

E

exp(if(x))dµ(x)

∣∣∣∣ ≤
∫

E

∣∣exp
(
if(x)

)∣∣
︸ ︷︷ ︸

=1

d|µ|(x) = |̂µ|(0) = |µ|(E)

2. Clear.

3. Let f0 ∈ E∗ and ε > 0 be arbitrary. We want to find a τ -compact set K ⊆ E and

δ > 0 s.t. B(K, δ, f0) ⊆ µ̂−1
(
Bε

(
µ̂(f0)

))
where

B(K, δ, f0) :=
{
f ∈ E∗ : sup

x∈K

∣∣f(x)− f0(x)
∣∣ < δ

}
.

By tightness of µ choose K ⊆ E s.t. |µ|
(
E \ K

)
≤ ε/4. By uniform continuity of

t 7→ exp(it) choose a δ > 0 s.t.

|exp(it)− exp(is)| ≤ ε

2|µ|(K)
, when |t− s| < δ.

Then for any f ∈ E∗ with

sup
x∈K

∣∣f(x)− f0(x)
∣∣ < δ

i.e. for any f ∈ B(K, δ, f0) we have

|µ̂(f)− µ̂(f0)| ≤
∫

E

∣∣ exp
{
if(x)

}
− exp

{
if0(x)

}∣∣d|µ|(x)

≤ 2 · |µ|
(
E \K

)
+

∫

K

∣∣ exp
{
if(x)

}
− exp

{
if0(x)

}∣∣d|µ|(x)

≤ 2 · |µ|
(
E \K

)
+ ε/2 ≤ ε.

i.e. µ̂(f) ∈ Bε

(
µ̂(f0)

)
, which shows the claim.

Note that the characteristic functional may not be weak∗-continuous. One can show
sequential weak∗-continuity using the Dominated Convergence Theorem, but that
does not imply continuity, e.g. weak∗ duals of reflexive Banach spaces are never
sequential.
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4. Since E is separable Banach, σ(E;E∗) = σ(τ) by Theorem 2.5. Thus, since E
is Polish, every finite signed measure µ on σ(E;E∗) is tight by Ulam’s Tightness
Theorem. Since on E∗ the topology of compact convergence is weaker than the
topology induced by the operator norm (i.e. the norm of bounded convergence) the
result follows from (3).

5. Let µ ≥ 0 and f1, . . . , fn ∈ E∗, a1, . . . , an ∈ C be arbitrary. Then

n∑

i,j=1

µ̂(fi − fj)aiaj =
∫

E

n∑

i,j=1

exp
{
i
(
fi(x)− fj(x)

)}
aiaj dµ(x)

=

∫

E

n∑

i,j=1

exp
{
ifi(x)

}
ai exp

{
ifj(x)

}
aj dµ(x)

=

∫

E

∣∣∣∣∣
n∑

j=1

exp
{
ifj(x)

}
aj

∣∣∣∣∣

2

︸ ︷︷ ︸
≥0

dµ(x) ≥ 0

Recall Bochner’s Theorem for the Fourier transform of probability measures on (Rn, ‖ · ‖)
(or any locally compact abelian Hausdorff group):

Theorem 2.13. (Bochner) Let φ : Rn → C be a positive-definite and continuous function
s.t. φ(0) = 1. Then there exists a unique probability measure µ on Rn s.t. φ = µ̂.

Proof. See [27, Thm. IX.9] for the case of Rn and [12, Thm. 4.19] for the general case of
a locally compact abelian Hausdorff group.

For E a separable Hilbert space there exists a generalization.

Theorem 2.14. (Minlos–Sazanov) Let (E, 〈·, ·〉) be a separable Hilbert space and φ :
E → C a positive definite complex-valued continuous functional. Then the following are
equivalent:

- φ is the characteristic functional of a finite Borel measure on E.

- There is a symmetric trace class linear operator S on E s.t. φ is continuous w.r.t.
the norm ‖x‖ :=

√
〈x, Sx〉 for every x ∈ E.

Proof. See [18, Chap. I, Thm. 4.4].

Although there are some positive results (e.g. [23]), there is no suitable analogue for
Bochner’s Theorem when E is not a Hilbert space; not even when E is Banach.

In general, the Fourier transform only characterizes a measure on σ(E;E∗), not on σ(τ).
Under some mild assumptions, however, this can be resolved.

Theorem 2.15. (Uniqueness of the Fourier transform) Let (E, τ) be a locally convex
TVS and µ1 and µ2 are finite signed measures on σ(E;E∗) s.t. µ̂1 = µ̂2.
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(1) Then µ1 = µ2.

(2) If µ1 and µ2 are defined on σ(τ) and Radon, then they agree not only on σ(E;E∗),
but all of σ(τ).

(3) If (E, τ) is separable Frechet, then µ1 and µ2 are defined on, and agree on σ(τ) =
σ(E;E∗).

Proof. (1) We want to show that for any µ ∈ M
(
E, σ(E;E∗)

)
we have that µ̂ = 0

implies µ = 0. Since the Fourier transform is a linear operator on M
(
E, σ(E;E∗)

)
,

this implies the result. Let f1, . . . , fn ∈ E∗ be arbitrary and define F : E → Rn via
F (x) = (f1(x), . . . , fn(x)), ∀x ∈ E. Denote by φF : E∗ → C the characteristic functional
of F as a random variable. Then for every ξ ∈ Rn we have

φF (ξ) =

∫

Rn

exp
{
i〈ξ, y〉

}
d
[
µ ◦ F−1

]
(y)

=

∫

E

exp
{
i〈ξ, F (x)〉

}
dµ(x)

=

∫

E

exp

{
i

n∑

i=1

ξifi(x)

}
dµ(x)

=
n∏

i=1

∫

E

exp
{
iξifi(x)

}
dµ(x)

=
n∏

i=1

µ̂(ξifi) = 0

where the latter term is 0 by assumption. Hence in particular the law of the random
vector F is the 0-measure, i.e. for every A ∈ B(Rn) we have

0 =
[
µ ◦ F−1

]
(A) = µ(F ∈ A) (2.4)

Since the f1, . . . , fn ∈ E∗ were arbitrary, this implies that µ agrees with the zero measure
on every cylinder set F−1(A). Since the algebra of cylinder sets is in particular ∩-stable,
the Dynkin’s Theorem implies that µ is 0 on the sigma-algebra generated by the cylinder
sets σ(C(E)), which proves the claim.

(2) Let E be locally convex. Then E is Hausdorff and completely regular [29, Chap. 1,
1.3], and E∗ separates points of E. Thus if µ1 and µ2 are assumed to be defined on σ(τ)
and Radon, then µ1 = µ2 on σ(τ) by [30, Chap. IV, Thm. 2.2 (b)].

(3) If E is separable Frechet, σ(E;E∗) agrees with σ(τ) by Theorem 2.5, and the claim
follows from (1).
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3 Gaussian Measures

3.1 First Definitions

Definition 3.1. Let (E, τ) be a locally convex TVS. A measure µ on σ(E;E∗) is called
Gaussian if for all f ∈ E∗ the push-forward measure µ ◦ f−1 is Gaussian on R, i.e. if it
has density

1√
2πσ2

exp

{
−(x− a)2

2σ2

}
, x ∈ R,

for some a ∈ R, σ ≥ 0. In other words, we require all f ∈ E∗ to be Gaussian random
variables in the usual sense.

In this definition we consider Dirac measures as Gaussian, i.e. we allow for a Gaussian
random variable to be constant a.s. Such distributions will be called degenerate. A
Gaussian measure is called non-degenerate if all f ∈ E∗ are non-degenerate. This is
equivalent to q being non-degenerate as defined in Definition 2.7 since

q(f, f) =

∫

E

[
f(x)− E(f)

]2
dµ(x) =

∫

R

[
y − E(f)

]2
d

[
µ ◦ f−1

]

︸ ︷︷ ︸
=N
(
E(f),Var(f)

)
(y) = Var(f).

which is 0 if and only if f is constant and equal to E(f) a.s.

Remark 3.2. It immediately follows from the definition that for any f1, . . . , fn ∈ E∗

the vector (f1, . . . , fn) is a Gaussian random vector in Rn for any n ∈ N. To see this, let
α ∈ Rn. Then 〈α, (f1, . . . , fn)〉 =

∑n

i=1 αifi lies in E
∗ and is thus Gaussian by assumption.

Hence (f1, . . . , fn) is a Gaussian random vector.

Many important Gaussian measures arise naturally as the distribution of function space
valued random variables (random processes). We will give some examples in subsection
4.4.

Example 3.3. Let (RN, τ) be the set of real-valued sequences equipped with the product
topology. This is a Frechet space and its dual can naturally be identified with the space
c00(R) of real-valued, eventually 0 sequences via the pairing

〈(an)n∈N, (xn)n∈N〉 =
∞∑

n=1

anxn, (an)n∈N ∈ c00(R), (xn)n∈N ∈ RN.

Let (Xn)n∈N be a sequence of real-valued, iid, N (0, 1)-distributed random variables defined
on a probability space (Ω,A,P). Since for any (an)n∈N ∈ c00(R) the function

Ω→ RN → R, defined by ω 7→ (X1(ω), X2(ω), . . .) 7→
∞∑

n=1

anXn(ω)

is measurable, so is Ω → RN w.r.t the sigma-algebra on RN generated by c00(R). Thus
we may interpret the discrete time stochastic process (Xn)n∈N as a random variable with
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values in (RN, τ). Now define µ on σ(RN; c00(R)) as the distribution of this process. µ is
a probability measure since (Xn)n∈N takes valued in RN P-a.s. and a Gaussian measure
since, as a finite sum of independent Gaussian random variables,

∑∞
n=1 anXn is Gaussian

as well for any (an)n∈N ∈ c00(R).

Note that for a Gaussian measure µ, the operator mµ and the form qµ are always well-
defined. In fact, mµ and qµ characterize µ completely via the Fourier transform.

Theorem 3.4 (Characterization of Gaussian measures by their characteristic functional).
Let (E, τ) be a locally convex TVS and µ a probability measure on σ(E;E∗). Then µ is
Gaussian if and only if there exists a positive, semi-definite, bilinear form q : E∗×E∗ → R
and a linear form m : E∗ → R s.t.

µ̂(f) = exp

{
im(f)− 1

2
q(f, f)

}
, ∀f ∈ E∗.

Proof. Let µ be a probability measure on σ(E;E∗).

“⇒” Assume µ is Gaussian. Then by definition, every f ∈ E∗ is a Gaussian random
variable E → R. Hence

µ̂(f) =

∫

E

exp
{
if(x)

}
dµ(x) =

∫

R

eiy d
[
µ ◦ f−1

]
(y)

︸ ︷︷ ︸
=dN

(
E(f),Var(f)

)
(y)

= φf (1) = exp

{
iE(f)− 1

2
Var(f)

}

where φf denotes the characteristic function of f as a random variable. So q and m are
the required forms by Definition 2.7 and Remark 2.9.

“⇐” Let f ∈ E∗ be arbitrary. Then, for every t ∈ R

φf (t) =

∫

E

exp
{
itf(x)

}
dµ(x) = exp

{
im(tf)− 1

2
q(tf, tf)

}
= exp

{
itm(f)− 1

2
t2q(f, f)

}

i.e. the characteristic function of f coincides with that of a N
(
E(f),Var(f)

)
-distributed

random variable. Thus, by Bochner’s Theorem, f is Gaussian, and thus µ is Gaussian.

Note that this does not mean that for every q and m as above there exists a Gaussian
measure on E having exp

{
im(f)− 1

2
q(f, f)

}
as its characteristic functional. The theorem

only makes a statement about the type of an already existing measure on E, not about
its existence. For example, Proposition 3.10 shows that if E is a Banach space q needs
to be representable by a compact linear operator C : E∗ → E. So for instance, on an
infinite-dimensional Hilbert space

(
H, 〈·, ·〉H

)
the functional exp

{
−1

2
〈f, f〉H

}
is not the

characteristic functional of any countably additive measure (see also [2, Cor. 2.3.2.]). We
will consider this example in more depth in Proposition 4.6 and Proposition 4.9.
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3.2 Fernique’s Theorem

3.2.1 Tail Estimates for Gaussian Measures

On finite-dimensional spaces, Gaussian measures have very good properties w.r.t. inte-
gration due to their exponential decay. This translates well to the infinite-dimensional
case and is the subject of the following celebrated Theorem of Fernique.

Theorem 3.5 (Fernique [10]). Let (E, τ) be a locally convex TVS and µ a centred Gaus-
sian measure on σ(E;E∗). Let S : E → [0,∞) be a semi-norm that is σ(E;E∗)− B(R)-
measurable.

(1) Then there exists an α > 0 s.t.

∫

E

exp
{
αS(x)2

}
dµ(x) <∞ (3.1)

Sharp bounds can be found in [2, Thm. 2.8.5.].

(2) In particular, for any λ > 0

∫

E

exp
{
λS(x)

}
dµ(x) <∞.

(3) If (E, ‖ · ‖E) is a Banach space, then there exist constants ε, C > 0 s.t. for all t ≥ 0

µ
({
x ∈ E : ‖x‖E ≥ t

})
≤ Ce−εt2 (3.2)

In other words, the norm has Gaussian tails. In particular, for every ε′ < ε

∫

E

exp
{
ε′‖x‖2E

}
dµ(x) <∞

and for any p > 0

∫

E

‖x‖pEdµ(x) <∞. (3.3)

Proof. (1) See [2, Thm. 2.8.5.].

(2) Let α > 0 satisfy equation (3.1). Then for any λ > 0

∫

E

eλS(x)dµ(x) ≤
∫

{
λ>αS(x)

}
eλS(x) dµ(x) +

∫

{
λ≤αS(x)

}
eλS(x) dµ(x)

≤ eλ
λ
α +

∫

E

eαS(x)
2

dµ(x) <∞.
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(3) For a direct proof and tail bounds see [8, Thm. 4.10]. The theorem still holds under
surprisingly mild assumptions on the measure µ (see [16, Prop. 3.10, Thm. 3.11]) For the
first corollary, note that

∫

E

exp
{
ε′‖x‖2E

}
dµ(x) =

∫ ∞

0

µ
{
x ∈ E : exp

{
ε′‖x‖2E

}
> t
}
dt

=

∫ ∞

0

µ

{
x ∈ E : ‖x‖2E >

ln t

ε′

}
dt

= 1 +

∫ ∞

1

µ

{
x ∈ E : ‖x‖E >

√
ln t

ε′

}
dt

≤ 1 +

∫ ∞

1

t−
ε

ε′ dt <∞,

where the ε in the last line is the one from equation (3.2). By choice of ε′ the exponent
is strictly smaller than −1, which makes the integral finite.

To see formula (3.3), note that tp ∈ O(exp{ε′t2}), i.e. there exists a t0 ≥ 0, B > 0 s.t. for
every t ≥ t0 the inequality tp ≤ exp{ε′t2} holds.

3.2.2 Embeddings of (E, τ)∗ →֒ Lp(E, µ)

The prime consequence of Fernique’s Theorem is the fact that for a Gaussian measure
µ on a locally convex TVS E the bounded linear functionals can be seen as elements of
Lp(E, µ) with 1 ≤ p <∞.

Proposition 3.6. Let (E, τ) be a locally convex TVS, µ a centred Gaussian measure on
σ(E;E∗), and 1 ≤ p <∞.

(1) Then the inclusion j : (E, τ)∗ → (Lp, µ) is linear and well-defined. If µ is non-
degenerate, then j is injective.

(2) If E is Banach, then j is a compact linear operator with operator norm ‖j‖ ≤( ∫
E
‖x‖pE dµ(x)

) 1
p .

Proof. (1) Linearity is clear. Well-definedness follows from Theorem 3.5. If µ is non-
degenerate, then q is a non-degenerate bilinear form, and thus, if j(f) = 0, then

0 = ‖j(f)‖pp =
∫

E

|f(x)|pdµ(x),

and thus f = 0 µ-a.s. Hence

q(f, f) =

∫

E

|f(x)|2dµ(x) = 0 (3.4)

and thus f = 0.
(2) Linearity is clear. For the boundedness let f ∈ E∗ be arbitrary. Then

‖j(f)‖pp =
∫

E

|f(x)|pdµ(x) ≤ ‖f‖pE∗

∫

E

‖x‖pEdµ(x) (3.5)
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and taking the p-th root and the supremum over all f ∈ E∗ gives the result. The operator
norm of j is the Lp norm of ‖ · ‖E : E → R.

In order to see compactness, let (fn)n∈N be a bounded sequence in E∗. Assume w.l.o.g.
∀n ∈ N : ‖fn‖E∗ ≤ 1. Then by Banach–Alaoglu there exists a subsequence (fnk

)k∈N
converging weak∗ (i.e. point-wise) to some f ∈ E∗ with ‖f‖E∗ ≤ 1. Hence by the
Dominated Convergence Theorem, justified by

|fnk
(x)| ≤ ‖fnk

‖E∗︸ ︷︷ ︸
≤1

‖x‖E ≤ ‖x‖E

and Fernique’s Theorem, the limit also exists in an Lp-sense:

lim
n→∞

∫

E

|fnk
(x)− f(x)|pdµ(x) = 0

For p = 2, where the norm is induced by the q-form, j being bounded implies that the
q-norm on E∗ is weaker than the operator norm. Better yet, j being a compact operator
implies that the q-norm is “a lot” weaker than the operator norm.

Remark 3.7. I am not entirely sure about the continuity of j when E is just locally convex.
The question is whether f 7→

∫
E
|f(x)|pdµ(x) is continuous, i.e. if the p-th moment is

continuous. For p = 1, 2 Theorem 3.8 and 3.9 give a criterion for this, and since Gaussian
measures have exponential decay, I would expect those criteria to be true for p ≥ 3 as
well.

3.2.3 Representability of m and q

Another consequence of Fernique’s Theorem are the following two criteria for when m and
q are representable.

Theorem 3.8. Let (E, τ) a locally convex TVS and µ a Gaussian measure on σ(E;E∗).

(1) The mean m : (E, τ)∗ → R is representable by an evaluation functional m = eva for
some a ∈ E if and only if it is continuous w.r.t. the weak∗ topology on (E, τ)∗.

(2) For any g ∈ (E, τ)∗ the functional C(g) : (E, τ)∗ → R is representable by an evalua-
tion functional if and only if it is weak∗-continuous; in which case C takes values in
E ⊆ E∗∗.

(3) Both assumptions are satisfied if (E, τ) is a separable Banach space.

Proof. (1) & (2) Since (E, τ) is locally convex there exists a canonical bijection between
E and the continuous dual of E∗ equipped with the weak∗ topology via x 7→ evx (see [4,
Chap. V, Thm. 1.3]).

(3) To show that the assumption is satisfied if E is a separable Banach space, note firstly
that it is enough to show sequential continuity by [4, Chap. V, Cor. 12.8]. Now note that
weak∗ convergence implies
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sup
n∈N
|fn(x)| <∞, ∀x ∈ E,

and thus supn∈N ‖fn‖E∗ =: α <∞ by the Uniform Boundedness Principle. By Fernique’s
Theorem

∫

E

∣∣ sup
n∈N

fn(x)
∣∣dµ(x) ≤

∫

E

sup
n∈N

∣∣fn(x)
∣∣dµ(x) ≤

∫

E

sup
n∈N
‖fn‖E∗‖x‖E dµ(x) ≤ α

∫

E

‖x‖E∗

︸ ︷︷ ︸
<∞

<∞,

i.e. the sequence (fn)n∈N is dominated by an integrable function supn∈N fn(x). Hence the
Dominated Convergence Theorem gives

m(fn) =

∫

E

fn(x)dµ(x)→
∫

E

f(x)dµ(x) = m(f).

The case of C follows similarly.

The proof rests on the Weak Representation Theorem (E∗,weak∗)∗ ≃ E (see [4, Chap.
V, Thm. 1.3]). The Mackey–Arens Theorem (see [29, Chap. IV, Sec. 3]) tells us that
one can extend this strategy: the weak∗ topology is the weakest topology exhibiting this
identification of E with its double dual E∗∗, but there are (possibly strictly stronger)
topologies with the same property. So it is really only necessary to show that m and
q are continuous w.r.t some topology η on E∗ s.t. (E∗, η)∗ ≃ E; in other words an
admissible topology η. The strongest admissible topology is the Mackey topology w.r.t.
the duality 〈E∗, E〉. And indeed, under the assumption of µ being Radon, m and C(g)
are Mackey-continuous for every g ∈ E∗.

Theorem 3.9. Let (E, τ) be a locally convex TVS and µ be a Gaussian measure on σ(τ)
which is Radon. Then for any g ∈ E∗ the mappings f 7→ m(f) and f 7→

[
C(g)

]
(f) =

q(g, f) are continuous w.r.t. the Mackey topology w.r.t. the duality 〈E∗, E〉 and thus
representable as evaluation functionals.

The assumption is satisfied when (E, τ) is separable Frechet and µ is defined on σ(E;E∗).

Proof. [2, Thm. 3.2.1.] and its subsequent paragraphs show that for every g ∈ E∗ the
operators m and q(g,−) = C(g) are continuous w.r.t. the Mackey topology on E∗ w.r.t.
the duality 〈E∗, E〉 and [29, Chap. IV, Sec. 3]) shows that this implies the result.

If (E, τ) is separable Frechet, then by Theorem 2.5 the weak and the Borel sigma-algebra
coincide. Hence µ is Borel. Furthermore, since (E, τ) is Polish and µ is finite, µ is also
Radon by [9, Chap. VIII, Thm. 1.16] and the assumption is satisfied.

3.2.4 Regularity of the Covariance Operator

We have established that if E is a separable Banach space, then q can be represented by
a linear operator C taking values in E. More can be said about its regularity.



24 3 GAUSSIAN MEASURES

Proposition 3.10. Let (E, ‖ · ‖E) be a separable Banach space and µ a centred Gaussian
measure on σ(E;E∗). Then the covariance form q : E∗×E∗ → R is bounded in the sense
that there exists an α > 0 s.t. for any f, g ∈ E∗

|q(f, g)| ≤ α‖f‖E∗‖g‖E∗ .

In particular, the covariance operator C is compact with operator norm ‖C‖ ≤
∫
E
‖x‖2Edµ(x).

Proof. Let f, g ∈ E∗ be arbitrary. Then

|q(f, g)| =
∣∣∣∣
∫

E

f(x)g(x)dµ(x)

∣∣∣∣ ≤
∫

E

|f(x)||g(x)|dµ(x)

≤
∫

E

‖f‖E∗‖g‖E∗‖x‖2Edµ(x)

=

∫

E

‖x‖2Edµ(x)
︸ ︷︷ ︸

=:α<∞

‖f‖E∗‖g‖E∗ (3.6)

where we used the triangle inequality for integrals and the standard bounds on the linear
functional. To see the bound for ‖C‖, note that

‖C(f)‖E = ‖C(f)‖E∗∗ = sup
g∈E∗

‖g‖E∗=1

|q(f, g)|

and apply the block of formulas above. Since E is separable Banach, the covariance
operator C takes values in E ⊆ E∗∗ by theorem 3.9. To see the compactness, let (fn)n∈N
be a bounded sequence in E∗. Assume w.l.o.g. ∀n ∈ N : ‖fn‖ ≤ 1. By the proof of
Proposition 3.6 there exists a subsequence (fnk

)k∈N and an f ∈ E∗ s.t. ‖fnk
− f‖2 → 0.

Thus

‖C(fnk
)− C(f)‖E = ‖C(fnk

− f)‖E = ‖C(fnk
− f)‖E∗∗

= sup
g∈E∗

‖g‖E∗=1

∣∣[C(fnk
− f)

]
(g)
∣∣ = sup

g∈E∗

‖g‖E∗=1

|q(fnk
− f, g)|

≤ sup
g∈E∗

‖g‖E∗=1

‖g‖2‖fnk
− f‖2 ≤ sup

g∈E∗

‖g‖E∗=1

‖g‖E∗

√
α‖fnk

− f‖2 ≤
√
α‖fnk

− f‖2 → 0

where α comes from formula (3.6). Thus we have shown that the image of an arbitrary
bounded sequence in E∗ has a convergent subsequence in E, making C compact.

Proposition 3.11. Let (E, 〈·, ·〉E) be a separable Hilbert space and µ a centred Gaussian
measure on σ(E;E∗). Then C is trace class with

tr C =

∫
‖x‖2E dµ(x)
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Proof. Let {en}n∈N be an orthonormal basis of E. Then

∫

E

‖x‖2E dµ(x) =
∞∑

n=1

∫

E

〈x, en〉2E dµ(x) =
∞∑

n=1

q(en, en) =
∞∑

n=1

〈en,Cen〉E = tr C,

where in the first equality we used the Dominated Convergence Theorem with

∣∣∣∣∣
N∑

n=1

〈x, en〉2E

∣∣∣∣∣ =
N∑

n=1

|〈x, en〉|2E ≤ ‖x‖2E.

We may summarize the preceding two subsections by the following table

Measure & Space Reg. of C Representable Bound Reference

General on loc. co. TVS weak∗ iff representable - Thm. 3.8

Radon on loc. co. TVS Mackey yes - Thm. 3.9

sep. Frechet Mackey yes - Thm. 3.9

sep. Banach compact yes ‖C‖ ≤ ‖
(
‖ · ‖E

)
‖22 Prop. 3.10

sep. Hilbert trace class yes tr C = ‖
(
‖ · ‖E

)
‖22 Prop. 3.11

3.3 Cameron–Martin Space

In the rest of this thesis, unless explicitly stated otherwise, it is assumed that C maps into
E ⊆ E∗∗ instead of just (E∗)′. For the more general case see [2, Sec. 2.4.].

3.3.1 Generalities

Definition 3.12. Let (E, τ) be a locally convex TVS and µ a Gaussian measure on
σ(E;E∗) and denote the mapping f 7→ f − m(f) ∈ L2(E, µ) by j.7 Then the closure of
the set

j(E∗) =
{
f −m(f) : f ∈ E∗

}
⊆ L2(E, µ) (3.7)

with respect to the 2-norm on L2(E, µ) is denoted by K(µ). Formula (3.7) is well-defined
by Proposition 3.6. Note that the values

7This coincides with the notation used in Proposition 3.6, since there the measure was assumed to be
centred and thus m(f) = 0 for every f ∈ E∗.
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‖j(f)‖2L2(E,µ) =

∫

E

([
j(f)

]
(x)
)2
dµ(x) =

∫

E

[
f(x)−m(f)

]2
dµ(x)

‖f‖2q =
∫

E

[
f(x)−m(f)

]2
dµ(x)

Var
[
j(f)

]
=

∫

E

[[
j(f)

]
(x)− E

[
j(f)

]
︸ ︷︷ ︸

=E(f)−m(f)=0

]2
dµ(x) =

∫

E

[
f(x)−m(f)

]2
dµ(x)

all coincide for every f ∈ E∗. Together with the inner product induced by L2(E, µ)
the space

(
K(µ), 〈·, ·〉L2(E,µ)

)
becomes a Hilbert space, called the reproducing kernel

Hilbert space of µ. The set of elements x ∈ E s.t. evx :
(
j(E∗), 〈·, ·〉L2(E,µ)

)
→ R is a

bounded linear functional is denoted H(µ) ⊆ E and equipped with the operator norm,
i.e. for any x ∈ H(µ)

‖x‖H(µ) := sup
f∈E∗

j(f) 6=0





∣∣[j(f)
]
(x)
∣∣

√
〈j(f), j(f)〉L2(E,µ)



 = sup

f∈E∗

〈j(f),j(f)〉
L2(E,µ)=1

{ ∣∣[j(f)
]
(x)
∣∣
}
.

The space
(
H(µ), ‖ · ‖H(µ)

)
is called the Cameron–Martin space of µ in (E, τ). The

Cameron–Martin space depends on E∗ (and thus E and τ) and on 〈·, ·〉L2(E,µ) (and thus
µ).

Remark 3.13. Recall that elements in L2(E, µ) are equivalence classes of functionals, not
functionals per se. If µ is non-degenerate, then formula (3.7) really is an inclusion, i.e.
the mapping f 7→ [f − m(f)]µ−a.s. is injective, where [ · ]µ−a.s. denotes the equivalence
class of functionals under the relation of µ-a.s. equivalence. The proof is essentially that
of injectivity in Proposition 3.6.

The interesting behaviour (e.g. Proposition 3.15 and Proposition 3.21) that separates
the infinite-dimensional setting from the finite-dimensional one is the fact that j(E∗) is
infinite-dimensional. While this is certainly the case when dimE = ∞ and µ is non-
degenerate, it may also happen if dimE =∞ and µ is mildly degenerate. For example, if
µ is the distribution of a Brownian bridge8 on C0[0, 1] tied down at 1, then the kernel of
j is merely the linear span of {ev1} and thus j(E∗) is infinite-dimensional. On the other
end of the spectrum, if µ is very degenerate such as µ = δ0 the Dirac measure at 0, then
j(E∗) = {0} and the subsequent theory becomes trivial. We will make more remarks
about degeneracy in appendix A.

Proposition 3.14. Let (E, τ) be a locally convex TVS, µ a Gaussian measure on σ(E;E∗),

and
(
K(µ), 〈·, ·〉L2(E,µ)

)
its reproducing kernel Hilbert space. Then

(1) every functional g ∈ K(µ) is centred Gaussian and has variance ‖g‖22,
(2) every functional g ∈ K(µ) is µ-a.s. affine, and µ-a.s. linear if µ is centred,

8See subsection 4.4.
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(3) if f, g ∈ K(µ) are orthogonal w.r.t. the inner product on L2(E, µ), then f and g are
independent as random variables (E, µ)→ R.

Proof. (1) Let g ∈ K(µ). Then there is a sequence (fn)n∈N in E∗ s.t. fn −m(fn)→ g in
the L2-norm and thus

Var
[
j(fn)

]
=
∥∥fn −m(fn)

∥∥2
L2 →

∥∥g
∥∥2
L2 = Var(g).

Also, there is a subsequence (fnk
− m(fnk

))k∈N s.t. fnk
− m(fnk

) → g µ-a.s. Thus, by
virtue of the Dominated Convergence Theorem, we have for every t ∈ R

φg(t) = µ̂(tg) = lim
k→∞

µ̂
[
t
(
fnk
−m(fnk

)
)]

= lim
k→∞

exp

{
−1

2
t2 Var

[
j(fnk

)
]}

= exp

{
−1

2
t2 Var(g)

}
.

Hence g is Gaussian with distribution N (0,Var(g)).

(2) The existence of a µ-a.s. convergent subsequence in the proof above also shows that
g is affine, and linear if µ is centred.

(3) Since f, g ∈ K(µ) are centred, 〈·, ·〉L2(E,µ) and thus

0 = 〈f, g〉L2(E,µ) = Cov(f, g).

Thus, f and g are uncorrelated and, since f and g are jointly Gaussian (see Remark 3.2),
they are also independent.

By definition, every element g ∈ L2(E, µ) has finite variance equal to ‖g‖22. So what
is remarkable about Proposition 3.14 is the first part, namely that all g ∈ K(µ) are
Gaussian. Note that not every element in K(µ) is continuous as a functional (E, τ)→ R.
The next theorem shows that passing from j(E∗) to its ‖ · ‖2-closure is non-trivial.

Proposition 3.15. [8, Cor. 4.17] Let (E, ‖ · ‖E) be a separable Banach space and µ a
non-degenerate Gaussian measure. Then the normed space (j(E∗), ‖ · ‖2) is not complete
unless E is finite-dimensional.

Proof. Since j : (E∗, ‖ · ‖E∗) → (E∗, ‖ · ‖2) is bounded (by Proposition 3.6(2)), linear,
and bijective, j is an isomorphism by the Open Mapping Theorem. But since j is also

compact by Proposition 3.6, this implies that B
‖·‖2
1 (0) and thus B

‖·‖E∗

1 (0) is pre-compact,
which implies that (E∗, ‖ · ‖E∗), and thus E, is finite-dimensional.

The covariance form q : E∗ × E∗ → R is L2-continuous and the covariance operator
C : E∗ → E∗∗ is L2 - weak∗-continuous9. Both are well-defined on equivalence classes and
can thus be L2-continuously extended to q : K(µ) ×K(µ) → R and C : K(µ) → (E∗)′.
We will assume that the extension of C also takes values in E ⊆ E∗∗, which is true
when (E, τ) is weakly complete. This is the case, for example, when (E, τ) is a reflexive
Banach space. The Cameron–Martin space can then be characterized as the image of this
extended covariance operator as follows.

9Here we mean the weak∗ topology on E∗∗, which coincides with the weak topology on E ⊆ E∗∗.
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Theorem 3.16. Let (E, τ) be a locally convex TVS and µ a Gaussian measure on
σ(E;E∗). Then for any h ∈ E we have

h ∈ H(µ) ⇔ ∃!h ∈ K(µ) : evh = C(h).

In this case ‖h‖H(µ) =
∥∥h
∥∥
L2(E,µ)

=
∥∥h
∥∥
q
.

Proof. “⇒”: We show existence. The uniqueness then follows from the isometry. Let
h ∈ E with ‖h‖H(µ) < ∞. Then by definition evh defines a bounded linear functional
on
(
j(E∗), 〈·, ·〉L2(E,µ)

)
and thus

(
K(µ), 〈·, ·〉L2(E,µ)

)
. Hence, by Riesz’s Representation

Theorem, there exists a unique h ∈ K(µ) s.t. for every f ∈ E∗

evh
(
j(f)

)
=
[
j(f)

]
(h) =

〈
h, j(f)

〉
L2(E,µ)

=

∫

E

hj(f)dµ = q
(
h, j(f)

)
=
[
C(h)

](
j(f)

)
.

Hence, by definition of C and the density of j(E∗) in
(
K(µ), 〈·, ·〉L2(E,µ)

)
, h = C(h).

“⇐”: Let h = C(h) for some h ∈ K(µ). Then

‖h‖H(µ) = sup
{
|evh

(
j(f)

)
| : f ∈ E∗, 〈j(f), j(f)〉L2(E,µ) = 1

}

= sup
{
|
〈
h, j(f)

〉
L2(E,µ)

| : f ∈ E∗, 〈j(f), j(f)〉L2(E,µ) = 1
}

(3.8)

≥
〈
h,

h∥∥h
∥∥
L2(E,µ)

〉

L2(E,µ)

=
∥∥h
∥∥
L2(E,µ)

.

This gives ‖h‖H(µ) ≥
∥∥h
∥∥
L2(E,µ)

. The Cauchy–Schwarz inequality applied to the inner

product in formula (3.8) also provides
∥∥h
∥∥
L2(E,µ)

as an upper bound, which shows that

‖h‖H(µ) is finite and also shows the isometry (which proves the uniqueness of h for a given
h).

Thus C defines a linear, isometric surjection, i.e. an isometric isomorphism C :
(
K(µ), 〈·, ·〉L2(E,µ)

)
→(

H(µ), ‖ · ‖H(µ)

)
, which turns

(
H(µ), ‖ · ‖H(µ)

)
into a Hilbert space via

〈h, k〉
H(µ) =

〈
h, k
〉
L2(E,µ)

= q
(
h, k
)
. (3.9)

The above can be summarized by the following diagram.

(E, τ)∗
(
K(µ), 〈·, ·〉L2(E,µ)

)
⊆ L2(E, µ)

(
H(µ), 〈·, ·〉H(µ)

)
(E, τ)

f
(
j(f)

)
= C

(
j(f)

)

〈
·,C
(
j(f)

)〉
H(µ)

= C
(
j(f)

)
C
(
j(f)

)

j

C

(·)
i

j

C

(·)
i
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3.3.2 Special Case: Finite-Dimensional Space

Consider what this means for for the finite-dimensional case. Let µ = N (0,Σ) be a
centred, non-degenerate Gaussian measure on Rn. Then the assumption at the beginning
of the chapter is satisfied, and since Σ is assumed to be non-degenerate, the diagram takes
the form

(Rn)∗ j
[
(Rn)∗

]
⊆ L2(Rn, µ)

Rn Rn

〈

x1
...
xn


 , ·

〉

Rn

〈

x1
...
xn


 , ·

〉

Rn



x1
...
xn






x1
...
xn




j

C

i

j

C

i

The bilinear forms q and 〈·, ·〉H(µ) can be identified as follows. As shown in Remark 2.9 (or
as can be seen by comparing the finite-dimensional formula of the characteristic function
of N (0,Σ) with Theorem 3.4), the covariance form is representable by Σ in the sense that

q
(
〈x, ·〉Rn , 〈y, ·〉Rn

)
= 〈x,Σy〉Rn , ∀x, y ∈ Rn.

Let 〈x, ·〉Rn be an element of j
[
(Rn)∗

]
. Then applying C needs to yield an element of Rn

s.t. for any functional 〈y, ·〉Rn

〈
y,C〈x, ·〉Rn

〉
Rn

= q
(
〈y, ·〉Rn , 〈x, ·〉Rn

)
= 〈y,Σx〉Rn .

Thus C〈x, ·〉Rn = Σx and (·) is given by x 7→ 〈Σ−1x, ·〉Rn . Hence for any x, y ∈ Rn

〈x, y〉H(µ) = q
( 〈

Σ−1x, ·
〉
Rn ,
〈
Σ−1y, ·

〉
Rn

)
=
〈
Σ−1x,ΣΣ−1y

〉
Rn =

〈
x,Σ−1y

〉
Rn .

Note that 〈·, ·〉H(µ) is the bilinear form in the Gaussian density, i.e. we may write dµ as

1√
(2π)n detΣ

exp

{
−1

2
‖x‖2

H(µ)

}
dλn(x), x ∈ Rn, (3.10)

where λn is the n-dimensional Lebesgue measure on Rn. On Rn this is completely rig-
orous, and, despite the fact that formula (3.10) does not make any sense on an infinite-
dimensional TVS, it provides a good heuristic. Figure 4 is a plot of the unit circle of the

H(µ)-norm for a centred Gaussian measure on R2 with covariance matrix

(
3 1
1 0.5

)
. It

may provide some intuition for how the Cameron–Martin space looks like in general.

3.3.3 Special Case: Classical Wiener Space

In the case of the classical Wiener space (see chapter 4.1) the necessary assumptions are
also satisfied and the diagram takes the form
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Figure 4: Sample points and the set {x ∈ R2 : ‖x‖H(µ) = 1} for a centred Gaussian
measure on R2 with covariance matrix ( 3 1

1 0.5 )

M0([0, 1]) (K(µ), q) ⊆ L2(C0[0, 1], µ)

(H1
0 , 〈·, ·〉H) C0[0, 1]

∫ 1

0
· dδs

∫ 1

0
· dδs =

∫ 1

0
Ψ′

s(t) d · (t) = Ψs

Ψs(t) = s ∧ t Ψs(t) = s ∧ t

j

C

(·)
i

j

C

(·)
i

By the Riesz–Markov–Kakutani Representation Theorem, the continuous dual space of
C[0, 1] can be identified with the space M([0, 1]), consisting of the finite signed Borel mea-
sures on [0, 1]. Consequently, the continuous dual space of the space of continuous func-
tions on [0, 1] s.t. x(0) = 0 is M0([0, 1]), defined as the quotient of M([0, 1]) by the span

of {δ0}, with the action of ν ∈ M0([0, 1]) on an x ∈ C0[0, 1] given by x 7→
∫ 1

0
x(t)dν(t).

We will consider the action of C on D := {δt : t ∈ [0, 1]}, as this uniquely determines C
on (K(µ), q) since the linear span of D lies dense in (K(µ), q).

By virtue of Fubini’s Theorem, the covariance form of a continuous and centred Gaussian
process (Xt)t∈[0,1], defined on some probability space (Ω,P), can be written as
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q(ν1, ν2) =

∫

C[0,1]

[∫ 1

0

x(t)dν1(t)

] [∫ 1

0

x(s)dν2(s)

]
dµ(x)

=

∫

C[0,1]

∫ 1

0

∫ 1

0

evs(x) evt(x)dν2(s)dν1(t)dµ(x)

=

∫ 1

0

∫ 1

0

∫

C[0,1]

evs(x) evt(x)dµ(x)dν2(s)dν1(t)

=

∫ 1

0

∫ 1

0

∫

C[0,1]

XsXtdPdν2(s)dν1(t)

=

∫ 1

0

∫ 1

0

Cov(Xs, Xt)dν2(s)dν1(t),

where Cov(Xs, Xt) denotes the covariance structure of (Xt)t∈[0,1]. In the case of BM
this is Cov(Xs, Xt) = s ∧ t for every s, t ∈ [0, 1].

Let ν ∈ M0([0, 1]) be arbitrary. Since D lies weak∗-dense in M0([0, 1]) and M0([0, 1])
separates points, we may identify C(ν) by testing it against Dirac measures. Thus by the
above derivation, C(ν) needs to be an element of C0[0, 1] s.t. for every t ∈ [0, 1]

[C(ν)](t) =

∫ 1

0

[C(ν)](s) dδt(s) = evC(ν)(δt) = [C(ν)](δt) = q(ν, δt)

=

∫ 1

0

∫ 1

0

Cov(Xs, Xu) dδt(s) dν(u) =

∫ 1

0

Cov(Xt, Xu) dν(u).

In particular, the images of the Dirac measures are

[C(δs)](t) = Cov(Xt, Xs) = t ∧ s =: Ψs(t).

See also the diagram for the classical Wiener space. According to Theorem 3.16 the
H(µ)-norm for images of D is given by

〈Ψs,Ψt〉H(µ) = q(δs, δt) = s ∧ t,
which coincides with the Dirichlet form

∫ 1

0

Ψ′
s(u)Ψ

′
t(u)dλ(u) = 〈Ψs,Ψt〉H1

0 [0,1]
.

Since C is a linear isomorphism, this means that H(µ) is the closure of {Ψt : t ∈ [0, 1]}
under the above norm, which is the first Hilbert–Sobolev space H1

0 [0, 1] of functions with
x(0) = 0. That is

H1
0 [0, 1] =

{
h ∈ C0[0, 1] : ∃h′ ∈ L2[0, 1] s.t. ∀t ∈ [0, 1] : h(t) =

∫ t

0

h′(s)ds
}
.

Following the heuristic introduced in the previous section we may formally (!) see the
classical Wiener measure as
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1

β
exp

{
−1

2
‖x‖2H1

0 [0,1]

}
Dx, x ∈ C0[0, 1],

where D is the “infinite-dimensional Lebesgue measure on C0[0, 1]” and β is a normalizing
constant. Again, ‖x‖2

H1
0 [0,1]

does not make any sense for an element x ∈ C0[0, 1] \H1
0 [0, 1].

It is also worthwhile to study the inverse map to C. As before, we only need to consider
its action on

C
{
δt : t ∈ [0, 1]

}
=
{
Ψt : t ∈ [0, 1]

}
⊆ C0[0, 1].

For every t ∈ [0, 1] the functional Ψt is defined for µ-a.e. x ∈ C0[0, 1] and it coincides

with evt =
∫ 1

0
· dδt. For a general h ∈ H1

0 [0, 1] there exists an approximation of the form

N∑

n=1

αn

(
Ψtn −Ψtn−1

)
→ h

in the H1
0 [0, 1]-norm with αn ∈ R and hence

N∑

n=1

αn

(
Ψtn −Ψtn−1

)
→ h

in the L2-norm. Thus there exists a subsequence s.t.

Nk∑

k=1

αnk

(
Ψtnk

−Ψtnk−1

)
→ h µ− a.s.,

and thus for µ-a.e. x ∈ C0[0, 1]

h(x) = lim
k→∞

Nk∑

k=1

αnk

(
Ψtn(x)−Ψtn−1(x)

)
= lim

k→∞

Nk∑

k=1

αnk

(
x(tn)− x(tn−1)

)
.

In other words, P-a.s.

h
(
(Bt)t∈[0,1]

)
= lim

k→∞

Nk∑

k=1

αnk

(
Btn − Btn−1

)
,

which is nothing but the Paley–Wiener stochastic integral associated to h ∈ H1
0 [0, 1],

where (Bt)t∈[0,1] is a standard Brownian motion defined on some probability space (Ω,P).
It is usually denoted

W (h) :=

∫ 1

0

h′(t)dBt.

The preceding also entails the Itô-isometry in the form of equation (3.9) as

‖W (h)‖L2(Ω,P) =

∥∥∥∥
∫ 1

0

ḣ(t)dBt

∥∥∥∥
L2(Ω,P)

= ‖h‖H1
0 [0,1]

= ‖h′‖L2[0,1] .
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3.4 Cameron–Martin Theorems

As alluded to in section 1.3, a Gaussian measure on Rn is quasi-invariant w.r.t. translation
in any direction. That is, for µ = N (0,Σ) and any y ∈ Rn the measures µ and µy are

equivalent, meaning that both Radon–Nikodým derivatives dµy

dµ
and dµ

dµy
exist. Moreover,

they can be computed explicitly: For any A ∈ B(Rn)

µy(A) = µ(A− y)

=

∫

A−y

1√
(2π)n detΣ

exp

{
− 1

2

〈
x,Σ−1x

〉
Rn

}
dλn(x)

=

∫

A

1√
(2π)n detΣ

exp

{
− 1

2

〈
x− y,Σ−1x− y

〉
Rn

}
dλn(x)

=

∫

A

1√
(2π)n detΣ

exp

{
− 1

2

〈
x,Σ−1x

〉
Rn +

〈
x,Σ−1y

〉
Rn −

1

2

〈
y,Σ−1y

〉
Rn

}
dλn(x)

=

∫

A

exp

{〈
x,Σ−1y

〉
Rn −

1

2

〈
y,Σ−1y

〉
Rn

}
dµ(x)

and thus

dµy

dµ
(x) = exp

{〈
x,Σ−1y

〉
Rn −

1

2

〈
y,Σ−1y

〉
Rn

}
, x ∈ Rn. (3.11)

As opposed to translation-invariance, this formula can be generalized to general locally
convex TVS, albeit in the infinite-dimensional case, not every y ∈ E is admissible, but only
those y which lie the Cameron–Martin space. The following theorem will thus (partially)
resolve the problem encountered in section 1.1.

Theorem 3.17. (Cameron–Martin I, [2, Prop. 2.4.2.]) Let (E, τ) be a locally convex
TVS, µ a Gaussian measure on σ(E;E∗), and h ∈ H(µ). Then µh := µ(·−h) is Gaussian
and equivalent to µ, and the Radon–Nikodým derivative is given by

dµh

dµ
(x) = exp

{
h(x)− 1

2
‖h‖2

H(µ)

}
, x ∈ E, (3.12)

where (·) is the inverse mapping of the covariance operator C (see Theorem 3.16).

Proof. By Fernique’s Theorem exp
(∣∣h
∣∣) is integrable and hence (3.12) gives a finite and

non-negative measure. We want to show that for any f ∈ E∗

µ̂h(f) =

∫

E

exp
{
if(x)

}
exp

{
h(x)− 1

2
‖h‖2

H(µ)

}
dµ(x), (3.13)

where the latter is the Fourier transform of a measure given by the density (3.12). Then
the Fourier Uniqueness Theorem 2.15 gives the result. Firstly, for any f ∈ E∗
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µ̂h(f) =

∫

E

exp
{
if(x)

}
dµh(x)

=

∫

E

exp
{
if(x+ h)

}
dµ(x)

=

∫

E

exp
{
i
[
f(x) + f(h)

]}
dµ(x)

= exp

{
im
[
f + f(h)

]
− 1

2
q
[
f(x) + f(h), f(x) + f(h)

]}

= exp

{
im(f) + if(h)− 1

2
q
[
f + f(h), f + f(h)

]}

= exp

{
im(f) + if(h)− 1

2

[
q(f, f) + 0 + 0

]}

= exp

{
im(f) + i〈h, f〉L2(E,µ) −

1

2
q(f, f)

}
. (3.14)

Now define the function

ρf (z) = exp

{
im(f)− 1

2
‖h‖2

H(µ)

}∫

E

exp

{
i
[
f(x)−m(f)− zh(x)

]}
dµ(x) (3.15)

of a real variable z. Then, since f −m(f)− zh lies in K(µ), and is thus centred Gaussian
by Proposition 3.14, the integral of (3.15) becomes

exp

{
− 1

2
q
[
f −m (f)− zh, f −m (f)− zh

]}

= exp

{
− 1

2
q
[
f −m (f) , f −m (f)

]
− 1

2
z2q
(
h, h
)
+ zq

(
h, f −m (f)

)}

= exp

{
− 1

2
q (f, f)− 1

2
z2‖h‖2L2(E,µ) + z〈h, f〉L2(E,µ)

}

= exp

{
− 1

2
q (f, f)− 1

2
z2‖h‖2

H(µ) + z〈h, f〉L2(E,µ)

}
,

which gives

ρf (z) = exp

{
im(f)− 1

2
‖h‖2

H(µ)

}
exp

{
− 1

2
q(f, f)− 1

2
z2‖h‖2

H(µ)+z〈h, f〉L2(E,µ)

}
. (3.16)

Since ρf is analytic with radius of convergence r =∞, there exists a holomorphic extension
to all of C. Now, on the one hand, for arbitrary zn → i, using the Bounded Convergence
Theorem with

∣∣∣∣exp
{
i
[
f(x)−m(f)− znh(x)

]}∣∣∣∣ ≤ exp

{
max
n∈N
|izn|

∣∣h(x)
∣∣
}

, ∀x ∈ E, (3.17)
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the expression in (3.15) converges to the right hand side of equation (3.13). On the other
hand, the right hand side of equation (3.16) converges to formula (3.14), which is the left
hand side of equation (3.13). Thus for any f ∈ E∗ the sequence ρf (zn) converges to both
the left and right hand side of equation (3.13), which means that they are equal. This is
what was to be shown.

To see not only absolute continuity of µh w.r.t. µ, but also equivalence, note that µ =
(µh)−h and apply the same argument as above.

The formula for the Radon–Nikodým density (3.12) is called the (abstract) Cameron–
Martin formula.

Lemma 3.18. Let µ be a Gaussian measure on Rn and x ∈ Rn arbitrary. Then

2− 2 exp

{
− 1

8

〈
x,Σ−1x

〉
Rn

}
≤ ‖µ− µh‖TV

where ‖ · ‖TV denotes the total variation norm.

Proof. See [2, Lem. 2.4.4.].

Theorem 3.19. (Cameron–Martin II, [2, Thm. 2.4.5.(i)]) Let (E, τ) be a locally convex
TVS, µ a Gaussian measure on σ(E;E∗), and h ∈ E s.t. ‖h‖H(µ) = ∞. Then µh and µ
are mutually singular.

Proof. By assumption of ‖h‖H(µ) = ∞, for every n ∈ N there exists an fn ∈ E∗ s.t.
q(fn, fn) = 1 and fn(h) ≥ n. Then

‖µh − µ‖TV = sup
{
|µh(A)− µ(A)| : A ∈ σ(E;E∗)

}

≥ sup
{ ∣∣∣∣
[
µ ◦ f−1

n

]
fn(h)

(B)−
[
µ ◦ f−1

n

]
(B)

∣∣∣∣ : B ∈ B(R)
}

=
∥∥∥
[
µ ◦ f−1

n

]
fn(h)
−
[
µ ◦ f−1

n

]∥∥∥
TV

By Lemma 3.18, for every n ∈ N

∥∥∥
[
µ ◦ f−1

n

]
fn(h)
−
[
µ ◦ f−1

n

]∥∥∥
TV
≥ 2− 2 exp

{
−1

8
|f(h)|2

}
≥ 2− 2 exp

{
−1

8
n2

}
,

so ‖µh − µ‖TV = 2 and thus µh and µ are mutually singular.

The upshot of Theorem 3.17 and Theorem 3.19 is that shifting a Gaussian measure µ along
an element x ∈ E yields an equivalent measure if and only if x ∈ H(µ). In that case, the
Radon–Nikodým derivative can be computed explicitly. We conclude this chapter with
two interesting properties of

(
H(µ), ‖ · ‖H(µ)

)
. The first one is that if E is a separable

Banach space, then the topology induced by the Cameron–Martin norm is “a lot” stronger
than the norm-topology. This manifests itself in the following proposition.



36 3 GAUSSIAN MEASURES

Proposition 3.20. Let (E, ‖ · ‖E) be a separable Banach space, µ a Gaussian measure
on σ(E;E∗), and H(µ) its Cameron–Martin space. Then

B
H(µ)
1 (0) := {h ∈ E : ‖h‖H(µ) ≤ 1} ⊆ E

is compact in the norm-topology of E. A similar result is generally true when E is assumed
to be only locally convex and the norm-topology is replaced by the weak topology.

Proof. See [8, p. 16, bottom] for the claim for separable Banach spaces and [2, Prop.
2.4.6.] for the claim regarding general locally convex TVSs.

The second one is that, despite its importance in the theory, the Cameron–Martin space
is quite small as far as the measure itself is concerned.

Proposition 3.21. ([2, Prop. 2.4.7.]) Let (E, τ) be a locally convex TVS, µ a centred
Gaussian measure on σ(E;E∗), and H(µ) its Cameron–Martin space. Then

H(µ) =
⋂

L linear subspace
L∈σ(E;E∗)
µ(L)=1

L,

and, unless K(µ) has finite dimension,

µ
[
H(µ)

]
= 0.

Proof. ⊆: Let h ∈ H(µ) be arbitrary and let L be a measurable linear subspace with
µ(L) = 1. Then µ(L+ h) = µh(L) = 1 by Theorem 3.17. Thus h ∈ L, as otherwise

µ(E) ≥ µ(L) + µ(L+ h) ≥ 2.

⊇: Let h 6∈ H(µ) be arbitrary. Then by definition there exist a sequence (fn)n∈N in E∗

s.t. 〈j(fn), j(fn)〉L2(E,µ) = 1, but
[
j(fn)

]
(h) ≥ n. Now notice that

∞∑

n=1

1

n2

∫

E

∣∣[j(fn)
]
(x)
∣∣2 dµ(x) =

∞∑

n=1

1

n2
〈j(fn), j(fn)〉L2(E,µ) =

∞∑

n=1

1

n2
<∞.

Thus via the Monotone Convergence Theorem the first term equals

∫

E

∞∑

n=1

1

n2

∣∣[j(fn)
]
(x)
∣∣2 dµ <∞,

and we conclude that

∞∑

n=1

1

n2

∣∣[j(fn)
]
(x)
∣∣2 <∞ for µ− a.e. x ∈ E.

Thus the subspace

L :=
{
x ∈ E :

∞∑

n=1

1

n2

∣∣[j(fn)
]
(x)
∣∣2 <∞

}
=
⋃

M∈N

⋂

N∈N

{
x ∈ E :

N∑

n=1

1

n2

∣∣[j(fn)
]
(x)
∣∣2 < M

}
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is measurable and has full measure. However, by construction, h 6∈ L. To see the second
claim, let K(µ) have infinite dimension. Then there exists an infinite orthonormal set
(j(fn))n∈N. By Proposition 3.14, (j(fn))n∈N is a sequence of iid random variables (E, µ)→
R s.t. f1 ∼ N (0, 1). Thus for µ-a.e. x ∈ E the sequence

([
j(fn)

]
(x)
)
n∈N

is unbounded
and in particular

{
x ∈ E :

∞∑

n=1

∣∣[j(fn)
]
(x)
∣∣2 <∞

}

has measure 0, but contains H(µ) since for every h ∈ H(µ)

∞∑

n=1

∣∣[j(fn)
]
(h)
∣∣2 =

∞∑

n=1

∣∣∣
〈
h, j(fn)

〉
L2(E,µ)

∣∣∣
2

=
∥∥h
∥∥2
L2(E,µ)

= ‖h‖2
H(µ) <∞.

3.5 Recapitulation for Separable Frechet Spaces

We want to briefly recapitulate the theory up to this point in its most natural setting:
separable Frechet spaces, i.e. Polish locally convex spaces.

Let (E, τ) be separable Frechet. The weak sigma-algebra σ(C(E)) = σ(E;E∗) coincides
with the Borel-sigma-algebra and many other reasonable choices (Thm. 2.5). The mean
and covariance operator of a measure on that sigma-algebra are continuous w.r.t. the
Mackey-topology of the pairing 〈E∗, E〉 and can thus be represented as evaluations (Thm.
3.9). The characteristic functional of a finite signed measure completely characterizes that
measure (Thm. 2.15), and the characteristic functional of a Gaussian measure can be
given explicitly (Thm. 3.4). On separable Hilbert spaces, the Minlos–Sazanov Theorem
(Thm. 2.14) gives an analogue of Bochner’s Theorem (Thm. 2.13), but even on just
Banach spaces, there is no such analogue. Due to Fernique’s Theorem (Thm. 3.5), semi-
norms are exponentially integrable w.r.t. a Gaussian measure and explicit tail bounds
can be given. There exists a linear subspace H(µ) ⊆ E s.t. for every h ∈ H(µ) the
measures µ and µh are equivalent (CM 1, Thm. 3.17). Furthermore, shifting along any
element x 6∈ H(µ) results in a mutually singular measure (CM 2, Thm. 3.19). The space(
H(µ), ‖ · ‖H(µ)

)
with its associated norm is isometrically isomorphic to the reproducing

kernel Hilbert space
(
K(µ), 〈·, ·〉L2(E,µ)

)
, which turns

(
H(µ), ‖ · ‖H(µ)

)
into a Hilbert space.

The inclusion

(
H(µ), ‖ · ‖H(µ)

)
→֒ E

is weakly compact (Prop. 3.20) and H(µ) is the intersection of all measurable linear
subspaces of E with full measure, but µ[H(µ)] = 0 unless K(µ) has finite dimension
(Prop. 3.21).
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4 Abstract Wiener Space

In the preceding chapter we started with a locally convex TVS E and a Gaussian measure
µ with covariance form qµ. Then we defined a Hilbert space embedded into L2(E, µ) whose
inner product was given by qµ and subsequently identified an isometrically isomorphic
subspace of E, the Cameron–Martin spaceH(µ) with inner product 〈·, ·〉H(µ). Heuristically
speaking, the Gaussian measure µ on E was then given by

1

β
exp

{
−1

2
‖x‖2

H(µ)

}
Dx, x ∈ E,

where D is the “infinite-dimensional Lebesgue measure on E” and β a normalization
constant (see subsection 3.3.2 and 3.3.3). In this chapter we want to study the dual
situation, which is the setting of the introductory section 1.2. We are given an expression
that should be a measure µ with density w.r.t. D, and, formally, looks like

1

β
exp

{
−1

2
〈x, x〉H

}
Dx,

as well as a separable Hilbert space whose elements are precisely those for which 〈x, x〉H
is finite. The goal is then to construct a TVS E on which this measure is well-defined,
taking the role of C0[0, 1] in the case of the classical Wiener space.

4.1 Classical Wiener Space

Before entering into a general discussion we first want to consider the classical example,
the construction of which we will try to emulate. Recall that standard Brownian motion
(BM) is defined as a stochastic process B = (Bt)t∈[0,1] on a probability space (Ω,A,P) s.t.
(a) P(B0 = 0) = 1,

(b) for any 1 ≤ i ≤ n and 0 = t0 < t1 < . . . < tn ≤ 1 the random variables Bti − Bti−1

are independent with distribution N (0, ti − ti−1), i.e. the increments of the process
are centred, independent, and normally distributed with variance proportional to the
length of the increment,

(c) t 7→ Bt(ω) is continuous for P-a.e. ω ∈ Ω.

Since for every t ∈ [0, 1] the mapping ω 7→ Bt(ω) is a random variable, the mapping
ω 7→ (Bt(ω))t∈[0,1] is measurable as a function

B : (Ω,A,P)→
(
R[0,1], σ

(
R[0,1], {evt}t∈[0,1]

))

Furthermore, by the definition of BM, B takes values in the subspace C0[0, 1] of continuous
functions starting at 0 P-a.s., which, equipped with the ‖·‖∞-norm, is a separable Banach
space. For the same reason as above

B : (Ω,A,P)→
(
C0[0, 1], σ

(
C0[0, 1], {evt}t∈[0,1]

))

is measurable, and since {evt}t∈[0,1] separates points of C0[0, 1], the weak sigma-algebra
σ(C0[0, 1], {evt}t∈[0,1]) and the Borel sigma-algebra B(C0[0, 1]) coincide by Theorem 2.5.
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Figure 5: Sample paths of standard Brownian motion.

The distribution of B, a probability measure on B(C0[0, 1]), is called the Wiener mea-
sure on C0[0, 1]. Note that any random variable with values in C0[0, 1] whose law is the
Wiener measure is necessarily a BM, i.e. a Brownian motion is a stochastic process with
the Wiener measure as its distribution. A priori, it is not clear that such process (or
equivalently such a measure) even exists in the way described, i.e. satisfying properties
(a) - (c). In fact, the physical phenomenon of Brownian motion had been observed and
described by R. Brown [3] almost 100 years prior to N. Wiener’s proof of existence in the
mathematical sense [32]. The proof of existence presented here will be constructive and
serves as a prototype for the more general setting of abstract Wiener spaces.

Theorem 4.1. Brownian Motion exists.

Proof. The proof is taken from [20, Sec. 2.3.], the sleek title from R. Durrett. Let I(n)
denote the set of odd integers between 0 and 2n with n ∈ N. Let

{
ξn,k : k ∈ I(n), n ∈ N

}

be a sequence of iid N (0, 1)-distributed random variables defined on some probability
space (Ω,A,P). We want to construct BM as a path-wise limit of sums of random variables

N∑

n=1

ξn,k sn,k,

where
{
sn,k : k ∈ I(n), n ∈ N

}
are the Schauder functions on [0, 1], defined by sn,k(t) :=∫ t

0
hn,k(s) ds, 0 ≤ t ≤ 1, and

{
hn,k : k ∈ I(n), n ∈ N

}
are the Haar wavelets defined by

hn,k(t) :=





2
n−1
2 , k−1

2n
≤ t < k

2n

−2n−1
2 , k

2n
≤ t < k+1

2n

0, otherwise

, k ∈ I(n), n ∈ N

and h0,0 ≡ 1. Since the Haar wavelets form an ONB of L2[0, 1], the Schauder functions
form an ONB of the first Hilbert–Sobolev space H1

0 [0, 1]. Define for every N ∈ N the
function B(N) : (Ω,A,P)→ C0[0, 1] via
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B(N)(ω) =
N∑

n=1

∑

k∈I(n)

ξn,k(ω)sn,k, B(0)(ω) = 0, ω ∈ Ω.

B(N)(ω) is continuous as a function of t, starts at 0, and the assignment ω 7→ B(N)(ω) is
weakly measurable and thus Borel measurable. We want to show that for P-a.e. ω ∈ Ω
the sequence (B(N)(ω))N∈N converges uniformly to a continuous function limN→∞B(N)(ω)
s.t. the random variable ω 7→ limN→∞B(N)(ω) is a BM. Firstly, note that for any n ∈
N, k ∈ I(n) we have

P [|ξn,k| > n] =

√
2

π

∫ ∞

n

e
−u2

2 du ≤
√

2

π

∫ ∞

n

u

n
e

−u2

2 du ≤
√

2

π

e
−n2

2

n
,

and thus

P

[
sup

k∈I(n)

|ξn,k| > n

]
= P


 ⋃

k∈I(n)

{
|ξn,k| > n

}

 ≤

∑

k∈I(n)

√
2

π

e
−n2

2

n
≤
√

2

π
2n
e

−n2

2

n
. (4.1)

Since the last term in line (4.1) is summable, the Borel–Cantelli Lemma implies that

P

[
sup

k∈I(n)

|ξn,k| > n for infinitely many n

]
= 0

and hence

P

[
sup

k∈I(n)

|ξn,k| ≤ n for all but finitely many n

]
= 1.

In other words, for P-a.e. ω ∈ Ω there exists an n0(ω) ∈ N s.t. ∀n ≥ n0(ω) :
supk∈I(n) |ξn,k| ≤ n. Thus for P-a.e. ω ∈ Ω

∥∥∥∥∥∥

∞∑

n=n0(ω)

∑

k∈I(n)

|ξn,k(ω)sn,k|

∥∥∥∥∥∥
∞

≤
∞∑

n=n0(ω)

∑

k∈I(n)

|ξn,k(ω)|‖sn,k‖∞ ≤
∞∑

n=n0(ω)

n2
−(n+1)

2 <∞,

where in the second to last estimate we used that

‖sn,k‖∞ = 2
−(n+1)

2 , ∀k ∈ I(n), n ∈ N.

Hence the sequence (B(N))n∈N is absolutely convergent in the uniform norm P-a.s.

To show that B is indeed a BM, we check the conditions of the definition. As a uniform
limit of continuous functions starting at 0 the function B(ω) is also continuous and starts
at 0 for P-a.e. ω ∈ Ω, showing (a) and (c). To check condition (b), let 1 ≤ i ≤ n and
0 = t0 < t1 < . . . < tn ≤ 1 be arbitrary. We will show that the characteristic function of
the random vector (Bt1 −Bt0 , . . . , Btn −Btn−1) coincides with that of a Gaussian random
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vector with independent and N (0, ti− ti−1)-distributed entries. That is, we want to show
that for any α1, . . . , αd ∈ R

E

[
exp

{
i

d∑

i=1

αi(Bti − Bti−1
)

}]
=

d∏

i=1

exp

{
−1

2
α2
i (ti − ti−1)

}
.

Set αd+1 = 0. Then rearranging the sum and using the Dominated Convergence Theorem
leads to

E

[
exp

{
i

d∑

i=1

αi(Bti − Bti−1
)

}]

=E

[
exp

{
−i

d∑

i=1

(αi+1 − αi)Bti

}]

= lim
N→∞

E

[
exp

{
−i

d∑

i=1

(αi+1 − αi)B
(N)
ti

}]

= lim
N→∞

E


exp



−i

d∑

i=1

(αi+1 − αi)
N∑

n=1

∑

k∈I(n)

ξn,ksn,k(ti)






 .

Independence of the ξn,k and forming the characteristic functions further yield

= lim
N→∞

N∏

n=1

∏

k∈I(n)

E

[
exp

{
−iξn,k

d∑

i=1

(αi+1 − αi)sn,k(ti)

}]

= lim
N→∞

N∏

n=1

∏

k∈I(n)

exp



−

1

2

(
d∑

i=1

(αi+1 − αi)sn,k(ti)

)2




= lim
N→∞

N∏

n=1

∏

k∈I(n)

exp

{
−1

2

( ∑

1≤i,j≤d

(αi+1 − αi)(αj+1 − αj)sn,k(ti)sn,k(tj)

)}

= lim
N→∞

exp



−

1

2

∑

1≤i,j≤d

(αi+1 − αi)(αj+1 − αj)
N∑

n=1

∑

k∈I(n)

sn,k(ti)sn,k(tj)





=exp



−

1

2

∑

0≤i,j≤d

(αi+1 − αi)(αj+1 − αj)
∞∑

n=1

∑

k∈I(n)

sn,k(ti)sn,k(tj)



 .

Recall Parseval’s identity: For f, g in a separable Hilbert space H and {en}n∈N an ONB
of H we have

〈f, g〉 =
∑

n∈N

〈f, en〉H〈g, en〉H .

Applied to the ONB of L2[0, 1] consisting of the Haar wavelets and the indicator functions
f = 1[0,ti], g = 1[0,tj ] this yields
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∞∑

n=1

∑

k∈I(n)

sn,k(ti)sn,k(tj) =
∞∑

n=1

∑

k∈I(n)

〈1[0,ti], hn,k〉L2〈1[0,tj ], hn,k〉L2 = 〈1[0,ti], 1[0,tj ]〉L2 = ti ∧ tj.

Using this and rearranging the sums yields

= exp

{
−1

2

(
2
∑

0≤i 6=j≤d

(αi+1 − αi)(αj+1 − αj)ti ∧ tj +
d∑

i=1

(αi+1 − αi)
2ti

)}

=exp

{
−

d−1∑

i=1

d∑

j=i+1

(αi+1 − αi)(αj+1 − αj)ti −
1

2

d∑

j=1

(αj+1 − αj)
2tj

}

=exp




−

d−1∑

i=1

(αi+1 − αi)ti

d∑

j=i+1

(αj+1 − αj)

︸ ︷︷ ︸
=αd+1−αj+1=−αj+1

−1

2

d∑

j=1

(αj+1 − αj)
2tj





=exp

{
−1

2

d−1∑

i=1

(α2
i+1 − α2

i )ti −
1

2
α2
dtd

}

=exp

{
d∑

i=1

−1

2
α2
i (ti − ti−1)

}
=

d∏

i=1

exp

{
−1

2
α2
i (ti − ti−1)

}
,

which is what was to be shown.

4.2 Cylinder Measures

Back to the general case. The first step in the program is to define a “measure” on H,
which controls the finite-dimensional distributions, and from which the actual measure
on E is built. We write “measure” in quotation marks here, since it will only be defined
on the algebra of cylinder sets of H (which is generally not a sigma-algebra) and will not
extend to a bona fide measure on σ(C(H)) (see Proposition 4.9).

Lemma 4.2. Let (H, 〈·, ·〉) be a Hilbert space. Then cylinder sets can be assumed to be
given by orthonormal functionals, i.e.

C(H) =
{
CA,e1,...,en : n ∈ N, A ∈ B(Rn), e1, . . . , en ∈ H orthonormal

}
, (4.2)

where C(H) is the algebra of cylinder sets of H, defined in Definition 2.1 and Proposition
2.2.

Proof. “⊇” clear.
“⊆” Let C ∈ C(H). Then there exist x1, . . . , xm ∈ H and A ∈ B(Rn) s.t.

C =
{
h ∈ H :

(
〈h, x1〉, . . . , 〈h, xm〉

)
∈ A

}
.
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Let K := (x1, . . . , xm)H ⊆ H denote the subspace of H spanned by x1, . . . , xm and choose
an orthonormal basis {e1, . . . , en} of K where dimK = n. Define a matrix T ∈ Rm×n by

Tij := 〈xi, ej〉, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Then

C =

{
h ∈ H :

(〈
h,

n∑

i=1

〈x1, ej〉ej
〉
, . . . ,

〈
h,

n∑

i=1

〈xm, ej〉ej
〉)
∈ A

}

=

{
h ∈ H :

(
n∑

i=1

〈x1, ej〉〈h, ej〉, . . . ,
n∑

i=1

〈xm, ej〉〈h, ej〉
)
∈ A

}

=
{
h ∈ H : T

(
〈h, e1〉, . . . , 〈h, en〉

)
∈ A

}

=
{
h ∈ H :

(
〈h, e1〉, . . . , 〈h, en〉

)
∈ T−1(A)

}
,

where T−1 denotes the pre-image under the map T . Since T is continuous, T−1(A) lies in
B(Rn) and thus C lies in the right hand side of formula (4.2).

Definition 4.3. Let (E, τ) be a locally convex TVS and C(E) its algebra of cylinder sets.
A (probability) cylinder measure ν on E is a finitely additive set function C(E)→ [0, 1]
s.t.

(i) ν(∅) = 0, ν(E) = 1, and

(ii) for any continuous linear operator P : (E, τ)→ Rn the push-forward of ν along P is
a measure on B(Rn) in the usual sense.

The Fourier transform of a cylinder measure is defined by

ν̂(f) :=

∫

R

exp{it}d
[
ν ◦ f−1

]
(t), f ∈ E∗.

Note that any probability measure µ defined on σ(E;E∗) restricts to a cylinder measure

µ|C(E) on C(E), and that µ̂ and µ̂|C(E) agree on E∗: Let f ∈ E∗ be arbitrary. Then

µ̂|C(E)(f) =

∫

R

exp
{
it
}
d
[
µ|C(E) ◦ f−1

︸ ︷︷ ︸
=µ◦f−1

]
(t)

=

∫

R

exp
{
it
}
d
[
µ ◦ f−1

]
(t)

=

∫

E

exp
{
if(x)

}
dµ(t) = µ̂(f).

Definition 4.4. Let (H, 〈·, ·〉H) be a separable Hilbert space and denote the standard
Gaussian distribution N (0, 1n×n) on Rn by γn. Define νH : C(H)→ [0, 1] via

νH(C) := γn(A), A ∈ B(Rn)
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where C = P−1(A) and P : H → Rn is a continuous linear operator given by

P =
(
〈·, e1〉, . . . , 〈·, en〉

)

for an orthonormal set {ei}ni=1. The function νH is called the canonical (or standard)
cylinder measure on H.

Remark 4.5. We want to stress the fact that despite its name, the canonical cylinder
measure νH on a separable Hilbert space H is not a measure, since it is only defined on
an algebra of sets C(H), and, as will be shown in Proposition 4.9, does not extend to a
bona fide measure on the generated sigma-algebra σ

(
C(H)

)
.

From the definition alone, it is not clear that νH is a cylinder measure or even merely
well-defined. This will be resolved in the next proposition.

Proposition 4.6. Let (H, 〈·, ·〉H) be a separable Hilbert space. Then its canonical cylinder
measure νH is a well-defined cylinder measure and has Fourier transform

ν̂H(x) = exp

{
−1

2
〈x, x〉H

}
.

Proof. Well-definedness, adapted from [8, Prop. 4.37.]: Lemma 4.2 shows that νH is
defined for every C ∈ C(H). We want to show that νH(C) is independent of the choice of
basis A ∈ Rn and generators e1, . . . , en ∈ H of C. So assume

{
h ∈ H :

(
〈h, e1〉, . . . , 〈h, en〉

)
∈ A

}
= C =

{
h ∈ H :

(
〈h, f1〉, . . . , 〈h, fm〉

)
∈ B

}

for some e1, . . . , en ∈ H orthonormal, f1, . . . , fm ∈ H orthonormal, A ∈ Rn, and B ∈ Rm.
Here we can assume orthonormality because of Lemma 4.2. Since the standard Gaussian
distribution is a product measure we have

γn(A) = γn+m(A× Rm) (4.3)

γm(B) = γn+m(B × Rn). (4.4)

Hence if we are able to show that the two right hand sides above coincide, then the
proposition is proven. To show this, complete e1, . . . , en and f1, . . . , fm to orthonormal
bases e1, . . . , en, . . . , en+m and f1, . . . , fm, . . . , fn+m, respectively, of the subspace of H
generated by e1, . . . , en, f1, . . . , fm. Denote by T the matrix given by

Tij := 〈ei, fj〉, 1 ≤ i, j ≤ n+m.

The matrix is orthogonal since e1, . . . , en, . . . , en+m and f1, . . . , fm, . . . , fn+m are orthonor-
mal bases. Denote by P : H → Rn+m the surjective linear operator

(
〈·, f1〉, . . . , 〈·, fn+m〉

)
.

Then we have

P−1(B × Rn) = C = P−1
(
T−1(A× Rm)

)
.
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Since P is surjective we have B×Rn = T−1(A×Rm). Thus, since the standard Gaussian
distribution is invariant under orthogonal transformations, the right hand side of equations
(4.3) and (4.4) coincide and the set function νH is well-defined.
Cylinder measure, adapted from [8, Prop. 4.37.]: To show that the set function νH is
a cylinder measure we check the axioms. We have

- νH(∅) = νH(P
−1(∅)) = γn(∅) = 0 and νH(H) = νH(P

−1(Rn)) = γn(R
n) = 1 for some

surjective bounded linear operator P : H → Rn.

- The push-forward along any bounded linear operator Q : H → Rn is a measure,
since the push-forward along any P =

(
〈·, e1〉, . . . , 〈·, en〉

)
is a measure, namely γn.

- To show finite additivity let C1, . . . , Cm ∈ C(H) be disjoint. By definition, for every
1 ≤ i ≤ m there exist a bounded, finite-dimensional linear operator Pi : H → Rn(i)

defined by

Pi =
(
〈·, ei1〉, . . . , 〈·, ein(i)〉

)
, ei1, . . . , e

i
n(i) ∈ H, orthonormal,

and a Borel set Ai ∈ B(Rn(i)) s.t. Ci = P−1
i (Ai). We want to find a single

n ∈ N and P : H → Rn s.t. Ci = P
−1
(A′

i) for some (possibly different) A′
i,

1 ≤ i ≤ m. For this, we pursue a similar strategy as for the well-definedness.
For every 1 ≤ i ≤ m complete ei1, . . . , e

i
n(i) ∈ H to an ONB of the span of K :=

{e11, . . . , e1n(1), . . . , em1 , . . . , emn(m)} and define by Ti the orthogonal linear operator R
n →

Rn transforming the first completed basis into the i-th completed basis. Then we
have

Ci = P−1
i (Ai)

=
{
x ∈ H :

(
〈x, ei1〉, . . . , 〈x, ein(i)〉

)
∈ Ai

}

=
{
x ∈ H :

(
〈x, ei1〉, . . . , 〈x, ein(i)〉, . . . , 〈x, ein〉

)
∈ Ai × Rn−n(i)

}

=
{
x ∈ H :

(
〈x, e11〉, . . . , 〈x, e1n(1)〉, . . . , 〈x, e1n〉

)
∈ T−1

i (Ai × Rn−n(i))︸ ︷︷ ︸
=:A′

i

}
(4.5)

and define

P :=
(
〈·, e11〉, . . . , 〈·, e1n(1)〉, . . . , 〈·, e1n〉

)
.

Thus equation (4.5) becomes Ci = P
−1
(A′

1). Note that since the Ci are disjoint, so
are the A′

i for 1 ≤ i ≤ m. With this in place, we deduce

νH

(
m⋃

i=1

Ci

)
= νH

(
n⋃

i=1

P
−1
(A′

i)

)
= νH

(
P

−1
m⋃

i=1

A′
i

)
= γn

(
m⋃

i=1

A′
i

)

=
m∑

i=1

γn(A
′
i) =

m∑

i=1

γn(i)(Ai) =
m∑

i=1

νH(Ci)
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where in the second to last equality we used the invariance of the standard Gaussian
measure under orthogonal transformations and the fact that the standard Gaussian
measure is a product measure, i.e.

γn
(
A′

i

)
= γn

(
T−1
i

(
Ai × Rn−n(i)

))
= γn

(
Ai × Rn−n(i)

)
= γn(i)

(
Ai

)
.

This shows the finite additivity. Note that the proof relies on the existence of n as
above and thus cannot be adapted to show countable additivity.

Fourier transform: Let x ∈ H be arbitrary. Then, since 〈·, x〉 : H → R is a Gaussian
random variable with variance Var(x) = ‖x‖2, ν̃H

(
〈·, x〉

)
equals

∫

R

exp
{
it
}
d
[
νH ◦ 〈·, x〉−1

]
(t) = φ〈·,x〉(1) = exp

{
−1

2
Var(x)

}
= exp

{
−1

2
〈x, x〉

}
.

Remark 4.7. The standard Gaussian distribution on Rn is the canonical cylinder measure
of (Rn, 〈·, ·〉Rn). The Gaussian measure N (0,Σ) is the canonical cylinder measure of
(Rn, 〈·,Σ·〉Rn).

Lemma 4.8. Let (H, 〈·, ·〉) be a separable Hilbert space, {en}n∈N an ONB of H and ν a
cylinder measure on C(H). Then the following are equivalent:

(a) ν is the canonical cylinder measure νH .

(b) For any finite subset {eij}mj=1 of {en}n∈N the bounded linear operator
(
〈·, ei1〉, . . . , 〈·, eim〉

)

is Gaussian with distribution N (0, 1n×n).

(c) For any x ∈ H the functional 〈·, x〉 is Gaussian with distribution N (0, ‖x‖2H).
(d) For any x ∈ H with norm 1 the functional 〈·, x〉 is standard Gaussian, i.e. has

distribution N (0, 1).

Proof. “(a) ⇒ (b) ⇒ (c) ⇒ (d)” By definition.
“(b) ⇒ (a)” Let {f1, . . . , fm} ⊆ H be an orthonormal set. Then the random vector(
〈·, f1〉, . . . , 〈·, fm〉

)
equals




〈
·,∑∞

n=1〈f1, en〉en
〉

...〈
·,∑∞

n=1〈fm, en〉en
〉


 = lim

N→∞




〈
·,∑N

n=1〈f1, en〉en
〉

...〈
·,∑N

n=1〈fm, en〉en
〉


 = lim

N→∞
A(N)



〈·, e1〉

...
〈·, eN〉




︸ ︷︷ ︸
∼N (0,1N×N )

where A(N) ∈ Rm×N . By assumption the vector on the right hand side has distribution
N (0, 1N×N) and hence

(
〈·, f1〉, . . . , 〈·, fm〉

)
is the norm-limit of Gaussian random variables

with distribution N (0, A(N)A(N)T ). Because norm convergence implies weak∗ convergence
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(and thus a.s. convergence), this shows that
(
〈·, f1〉, . . . , 〈·, fm〉

)
is Gaussian with distri-

bution N (0, limN→∞A(N)A(N)T ).10 For any N ∈ N and 1 ≤ i, j ≤ m we have

lim
N→∞

(
A(N)A(N)T

)
i,j

= lim
N→∞

〈

〈fi, e1〉

...
〈fi, eN〉


 ,



〈fj, e1〉

...
〈fj, eN〉



〉

=

{
1, i = j

0, i 6= j
, (4.6)

where the last line is due to the linear isometry H → ℓ2 via x 7→ (〈x, en〉)n∈N and the fact

that fi and fj are orthogonal w.r.t. the inner product in H. Thus limN→∞A(N)A(N)T is
the identity matrix 1n×n, which implies that 〈·, f1〉, . . . , 〈·, fm〉 are independent.

“(c) ⇒ (b)” Assume (c) was true, but (b) was not. Note that
(
〈·, ei1〉, . . . , 〈·, eim〉

)
is a

Gaussian vector since for any (αi)
m
i=1 ∈ Rm we have

〈

α1
...
αm


 ,



〈·, ei1〉

...
〈·, eim〉



〉

=
m∑

k=1

αi〈·, eik〉 =
〈
·,

m∑

k=1

αkeik

︸ ︷︷ ︸
∈H

〉

which is Gaussian by assumption. Since (b) is not true by assumption, there exist e1, e2 ∈
H orthonormal s.t. Cov(e1, e2) 6= 0, and thus

Var

(
1√
2
(e1 + e2)

)
=

∫

H

〈
x,

1√
2
(e1 + e2)

〉2

dν(x)

=
1

2

∫

H

(
〈x, e1〉+ 〈x, e2〉

)2
dν(x)

=
1

2

(∫

H

〈x, e1〉2dν(x)
︸ ︷︷ ︸

=Var(e1)=1

+2

∫

H

〈x, e1〉〈x, e2〉dν(x)
︸ ︷︷ ︸

=Cov(e1,e2) 6=0

+

∫

H

〈x, e2〉2dν(x)
︸ ︷︷ ︸

=Var(e1)=1

)

= 1 + Cov(e1, e2) 6= 1,

despite the fact that

∥∥∥∥
1√
2
(e1 + e2)

∥∥∥∥
2

=
1

2
〈e1 + e2, e1 + e2〉 =

1

2

(
‖e1‖2H︸ ︷︷ ︸

=1

+2 〈e1, e2〉︸ ︷︷ ︸
=0

+ ‖e2‖2H︸ ︷︷ ︸
=1

)
= 1,

which is a contradiction to (c).

“(d) ⇒ (c)” Clear.

Proposition 4.9. Let (H, 〈·, ·〉H) be a separable Hilbert space. If H is infinite-dimensional,
then its canonical cylinder measure νH does not extend to a σ-additive measure on σ(C(H)).

10To be precise, this follows only after we show that the limit limN→∞ A(N)A(N)T exists, which is done
in equation (4.6).
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We give two arguments:

Proof. (1) This follows by Proposition 3.10. Assume νH did extend to a σ-additive mea-
sure νH on σ(C(H)). Then the Fourier transform ν̂H of νH and the characteristic functional
ν̂H of νH would coincide. Hence νH would be a measure on σ(C(H)) with non-compact
covariance operator, which cannot exist by Proposition 3.10.

Proof. (2), [8, Prop. 4.38.]: Let {en}n∈N be an ONB of H and define the cylinder sets

An,k :=
{
x ∈ H : |〈x, ei〉| ≤ k, 0 ≤ i ≤ n

}
=



〈·, e1〉

...
〈·, en〉




−1

[−k, k]n, 0 ≤ n, k.

Note that Bk(0) ⊆ An,k for every n ∈ N and that

νH(An,k) = γn
(
[−k, k]n

)
= γ

(
[−k, k]

)n

where the last equality is due to the fact that γn is a product measure. Since γ
(
[−k, k]

)
<

1, for any k ∈ N we may choose an nk ∈ N large enough s.t.

νH(Ank,k) = γ
(
[−k, k]

)nk < 2−k,

thus

∞∑

n=1

νH(Ank,k) <
∞∑

n=1

2−k = 1,

and hence

H =
∞⋃

k=1

Bk(0) ⊆
∞⋃

k=1

Ank,k ⊆ H.

Therefore, if νH had a σ-additive extension to σ(C(H)), then

1 = νH(H) = νH

(
∞⋃

k=1

Ank,k

)
≤

∞∑

n=1

νH(Ank,k) < 1,

which is a contradiction.

The latter of the two proofs illustrates the problem: a product probability measure s.t.
µ has positive mass outside of [−k, k] will concentrate outside of [−k, k]n for large n. In
other words, the mass of the supposed µ is concentrated “at infinity”. We thus continue
our program by trying to interpret H as a subspace of some larger space E that includes
the entire mass of µ. We want to illustrate this via the following example.

Example 4.10 ((Xn)n∈N on a weighted sequence space). Consider the separable Hilbert
space (ℓ2(R), ‖ · ‖2) of real-valued, square-summable sequences and let νℓ2 denote its
canonical cylinder measure. By Lemma 4.8 this means that for any n ∈ N the vector
(evi1 , . . . , evin) is standard Gaussian. One should think of νℓ2 as the distribution of a
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sequence (Xn)n∈N of iid N (0, 1)-distributed random variables on some probability space
(Ω,A,P). Strictly speaking, (Xn)n∈N : Ω → ℓ2 is not well-defined, since

∑∞
n=1X

2
n = ∞

P-a.s. So in accordance with Proposition 4.9 we have νℓ2(ℓ
2) = 0. Generic elements of

(Xn)n∈N, i.e. those that carry the weight of νℓ2 , have infinite ‖ · ‖2-norm. So our strategy
is to consider a new norm for which generic elements of (Xn)n∈N have finite norm, that
is, a norm that “detects the mass at infinity”.

Consider the sequence a := (an)n∈N = (2−n)n∈N ∈ ℓ2 and define ℓ2a as the a-weighted ℓ2

space, i.e.

ℓ2a :=

{
(xn)n∈N ∈ RN :

∞∑

n=1

2−nx2n <∞
}

together with the inner product given by 〈x, y〉a =
∑∞

n=1 2
−nxnyn. Then, formally,

νℓ2
(
ℓ2a
)
= P

(
(Xn)n∈N ∈ ℓ2a

)
= P

(
∞∑

n=1

2−nX2
n <∞

)
= 1. (4.7)

But how is the first expression in formula (4.7) even defined, given that νℓ2 is a cylinder
measure on ℓ2, not ℓ2a? And how (or rather in what sense) does this extend νℓ2 as defined
on C(ℓ2)? These questions will be answered with the general construction of abstract
Wiener spaces due to L. Gross [15].

4.3 Construction via Measurable Norms

Recall the strategy alluded to in the preceding section. We want to construct a measure
on H with the property that orthonormal elements are standard Gaussian. We cannot
have that though, since the mass of such a measure would be concentrated at infinity.
The solution is to embed H into a larger space E which includes those places at infinity,
i.e. E is the closure of H in a suitable sense.

Recall Example 4.10 and the heuristic that the canonical cylinder measure there was just
“the distribution” of a sequence of iid standard normal random variables. More precisely,
we considered the ONB (δn)n∈N of ℓ2, where δn is the sequence having 1 in the n-th
position and 0 in the others, and νℓ2 as the supposed distribution of the random variable

Z :=
∞∑

k=1

Xnδn =
(
X1, X2, . . .

)
.

However, in the ‖ · ‖2-norm this series does not converge P-a.s., while in the ‖ · ‖a-norm
it does. We want to replicate this process more abstractly. We will consider

Z :=
∞∑

n=1

ξnen,

where {ξn}n∈N is a sequence of iid N (0, 1) real-valued random variables and {en}n∈N is an
ONB of H, and find a suitable norm (analogous to ‖ · ‖a) s.t. the series converges P-a.s.
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Definition 4.11. Let (H, 〈·, ·〉H) be a separable Hilbert space, νH its canonical cylinder
measure, and P(H) the set of finite-dimensional, orthogonal projections on H. A norm
‖ · ‖ on H is called measurable w.r.t. (H, νH) (in the sense of Gross) if for every ε > 0
there exists a finite-dimensional orthogonal projection operator Pε ∈ P(H) s.t. for any
P ∈ P(H) with P ⊥ Pε we have

νH

{
x ∈ H : ‖Px‖ > ε

}
< ε.

Remark 4.12. ([8, p. 27]) The name “measurable norm” is perhaps a bit misleading. It
does not say anything about ‖ · ‖ being measurable as a function H → R, but rather it
expresses that ‖ · ‖ is compatible with µ in some sense.

Proposition 4.13. Let (H1
0 [0, 1], 〈·, ·〉H1

0 [0,1]
) be the first Hilbert–Sobolev space. Then ‖·‖∞

is a measurable norm w.r.t. (H1
0 [0, 1], νH1

0 [0,1]
), while ‖ · ‖H1

0 [0,1]
is not.

Proof. See [8, Lem. 4.41., Prop. 4.42.].

Theorem 4.14. Let (H, 〈·, ·〉H) be a separable Hilbert space, νH its canonical cylinder
measure, ‖ ·‖E a measurable norm w.r.t. (H, νH), E the completion of H under the ‖ ·‖E-
norm and i : H →֒ E the inclusion of H into E. Then there exists a measure µ on B(E)
s.t.

(1) µ is an extension of νH∗ := νH ◦ i−1, which is defined on C(E) ⊆ B(E)
(2) (H, ‖ · ‖H) coincides with the Cameron–Martin space of (E, µ).

Proof. (1): We define µ as the distribution of a random variable Z, which will be con-
structed as in Theorem 4.1. Let (ξn)n∈N be a sequence of iid, real-valued, N (0, 1)-
distributed random variables, defined on some probability space (Ω,F ,P). Inductively
define a sequence of orthogonal projections as follows.

Define P0 = 0 and assume Pn was defined. Then, since ‖ · ‖E is a measurable norm, there
exists a finite rank orthogonal projection operator P ′

n s.t.

µ
{
x ∈ H : ‖Px‖E > 2−n

}
< 2−n, ∀P ∈ P(H) s.t. P ⊥ P ′

n. (4.8)

Now define

Pn = Pn−1 + P ′
n + 〈e′n, ·〉H

where en lies in the orthogonal complement of
(∑n−1

i=1 Pi

)
(H). From

P ′
n ⊆ Pn−1 + P ′

n + 〈e′n, ·〉H
we deduce that any P ∈ P(H) which is orthogonal to Pn−1+P

′
n+〈e′n, ·〉H is also orthogonal

to P ′
n. Hence any P ∈ P(H) s.t. P ⊥

(
Pn−1 + P ′

n + 〈e′n, ·〉H
)
also fulfils the condition

in formula (4.8). Thus the sequence Pn is increasing and for each n ∈ N the orthogonal
projection Pn fulfils the condition in formula (4.8). By adding 〈e′n, ·〉H we ensured that
Pn ↑ I.11 Now choose an ONB (ek)k∈N of H s.t. ∀n ∈ N the set {e1, . . . , ekn} is an ONB
of Pn(H). Then define the sequence

11One could have also argued that w.l.o.g. the Pn can be chosen s.t. Pn ↑ I.
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Zn :=
kn∑

i=1

ξi ei, n ∈ N

of H-valued random variables. By the above, for every n ∈ N

P
{
ω ∈ Ω : ‖Zn+1 − Zn‖E > 2−n

}
(4.9)

= P

{
ω ∈ Ω :

∥∥∥∥∥

kn+1∑

i=kn+1

ξi(ω)ei

∥∥∥∥∥
E

> 2−n

}

= νH

(
x ∈ H : ‖(Pn+1 − Pn)x‖E > 2−n

)
< 2−n. (4.10)

Hence

∞∑

n=1

P
{
ω ∈ Ω : ‖Zn+1 − Zn‖E > 2−n

}
<

∞∑

n=1

2−n <∞,

which, via the Borel–Cantelli lemma, implies that P-a.s. ‖Zn+1 − Zn‖E ≤ 2−n for all but
finitely many n ∈ N. In particular this means that P-a.s. (Zn)n∈N is ‖ · ‖E-Cauchy and
thus P-a.s. ‖ · ‖E-convergent to a limit Z := limn→∞ Zn.

Define a measure µ on B(E) as the distribution of Z. Then we want to show that µ is an
extension of νH∗ := νH ◦ i−1, which is defined on C(E). Note that since H is embedded
in E via the inclusion i, the dual E∗ is embedded in H∗ ≃ H via the adjoint i∗. We will
show that µ̂ and ν̂H∗ coincide on E∗.

In the following we will denote the action of a linear functional f ∈ E∗ on an element
x ∈ E via 〈f, x〉E. Let f ∈ E∗ be arbitrary. Then using the Dominated Convergence
Theorem



52 4 ABSTRACT WIENER SPACE

µ̂(f) =

∫

E

exp
{
i
〈
f, x
〉
E

}
dµ(x)

=

∫

Ω

exp
{
i
〈
f, iZ(ω)

〉
E

}
dP(ω)

= lim
N→∞

∫

Ω

exp

{
i

N∑

n=1

ξn(ω)〈f, ien〉E
}

dP(ω)

= lim
N→∞

N∏

n=1

∫

Ω

exp
{
iξn(ω)〈f, ien〉E

}
dP(ω)

= lim
N→∞

N∏

n=1

∫

Ω

exp
{
iξn(ω)〈i∗f, en〉H

}
dP(ω)

= lim
N→∞

N∏

n=1

exp
{
− 1

2
〈i∗f, en〉2H

}

= exp
{
− 1

2

∞∑

n=1

〈i∗f, en〉2H
}

= exp
{
− 1

2
‖i∗f‖2H

}
.

Furthermore

ν̂H∗(f) =

∫

R

exp{it} d
[
νH∗ ◦ f−1

]
(t)

=

∫

R

exp{it} d
[
νH ◦ i−1 ◦ f−1

]
(t)

=

∫

R

exp{it} d
[
νH ◦ (f ◦ i)−1

]
(t)

=

∫

R

exp{it} d
[
νH ◦ (i∗f)−1

]
(t)

= ν̂H
[
i∗(f)

]
= exp

{
−1

2
‖i∗(f)‖2H

}
,

where in the last line we used Proposition 4.6. This is what was to be shown.
(2) Recall that the Cameron–Martin subspace H(µ) consists of all those elements h ∈ E
s.t.

(
K(µ), 〈·, ·〉L2(E,µ)

)
→ R, f 7→ f(h)

is continuous. In order to show (H, ‖ · ‖H) =
(
H(µ), ‖ · ‖H(µ)

)
we show equality as sets

and isometry.

Inclusion “H ⊆ H(µ)”: Let h ∈ H and f ∈ E∗ be arbitrary. Firstly,
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|〈f, h〉E| = |〈i∗f, h〉H | ≤ ‖i∗f‖H‖h‖H .
Secondly,

〈f, f〉L2(E,µ) =

∫

E

|f(x)|2dµ(x) =
∫

Ω

|f
(
iZ(ω)

)
|2dP(ω) (4.11)

= Var
[
f(iZ)

]
= Var

[
f( lim

n→∞
iZn)

]
= Var

[
lim
n→∞

f(iZn)
]
= lim

n→∞
Var

[
f(iZn)

]

= lim
n→∞

n∑

j=1

|〈f, iej〉E|2 =
∞∑

j=1

|〈f, iej〉E|2

=
∞∑

j=1

|〈i∗f, ej〉H |2 = ‖i∗f‖2H .

Here we used that f(Zn) → f(Z) P-a.s. since f is continuous and thus Var
(
f(Zn)

)
→

Var
(
f(Z)

)
because both f(Zn) and f(Z) are Gaussian. Hence we have

|〈f, h〉E| ≤ 〈f, f〉L2(E,µ)‖h‖H . (4.12)

Dividing by 〈f, f〉L2(E,µ) and taking the supremum over all f ∈ K(µ) shows that h ∈ H(µ).

Inclusion “H ⊇ H(µ)”: In order to show the other inclusion we want to show that
(H, ‖ · ‖H) is dense in

(
H(µ), ‖ · ‖H(µ)

)
. Since (H, ‖ · ‖H) is complete and ‖ · ‖H(µ) = ‖ · ‖H

(due to the isometry, which will be shown last) we deduce that
(
H, ‖ · ‖H(µ)

)
is complete

and hence a closed subspace of
(
H(µ), ‖ · ‖H(µ)

)
. By Theorem 3.16 we know that the

adjoint of the inclusion iµ :
(
H(µ), ‖ · ‖H(µ)

)
→ E is an isometry (1) and has dense image

(2). We will show that the orthogonal complement of H ⊆ H(µ) is {0}. Let g ∈ H(µ)
s.t. 〈g, h〉H(µ) = 0 for every h ∈ H. Choose a sequence i∗µ(fn) → g in the ‖ · ‖H(µ)-norm
(which exists by (2)). Then (fn)n∈N ⊆ E∗ is q-Cauchy (by (1)), thus (i∗fn)n∈N ⊆ E∗ is
‖ · ‖H-Cauchy (by equation (4.11)), and hence ‖ · ‖H-convergent to some k ∈ H. However,
for every h ∈ H

〈k, h〉H ← 〈i∗(fn), h〉H = 〈fn, ih〉H = 〈fn, iµh〉H = 〈i∗µ(fn), h〉H(µ) → 〈g, h〉H(µ) = 0

when n→∞. Thus k = 0, implying

‖g‖2
H(µ) = lim

n→∞
‖i∗µ(fn)‖2H(µ) = lim

n→∞
〈fn, fn〉L2(E,µ) = lim

n→∞
‖i∗(fn)‖2H = ‖k‖2H = 0,

and thus g = 0. This shows the claim.

Inequality “‖ · ‖H(µ) ≤ ‖ · ‖H”: Let h ∈ H ∩H(µ) be arbitrary. Rearranging equation
(4.12) and taking the supremum over f ∈ E∗ gives the result.

Inequality “‖ · ‖H(µ) ≥ ‖ · ‖H”: Let h ∈ H ∩ H(µ) be arbitrary. Choose a sequence
(fn)n∈N ⊆ E∗ s.t. i∗fn → h in H (which exists since i is injective, and thus i∗ has dense
image). Then by definition we have
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|〈fn, h〉E|
〈fn, fn〉L2(E,µ)

≤ ‖h‖H(µ), ∀n ∈ N.

Now, for the enumerator on the left hand side we have

|〈fn, h〉E| = 〈i∗fn, h〉H → ‖h‖2H
and for the denominator

〈fn, fn〉L2(E,µ) = ‖i∗fn‖2H → ‖h‖2H ,

where we used that i∗ is an isometry (see (4.11)). Thus the other inequality is shown.

Definition 4.15. An abstract Wiener space is a quadruple (E,H, i, µ) consisting of

(1) a separable Banach space (E, ‖ · ‖E),
(2) a separable Hilbert space (H, 〈·, ·〉H),
(3) a continuous, linear embedding i : H →֒ E with dense image s.t. ‖i(·)‖E is a

measurable norm in the sense of Gross,

(4) a Gaussian measure µ on B(E) which is the extension of νH ◦i−1 from C(E) to B(E),

where νH is the canonical cylinder measure on H as defined in Definition 4.4.

The next theorem shows that every centred Gaussian measure on a separable Banach
space arises in this fashion - it is a converse to Theorem 4.14.

Theorem 4.16. Let (E, ‖ · ‖E) be a separable Banach space, µ a Gaussian measure on it,
and H(µ) its Cameron–Martin space. If H(µ) →֒ (E, ‖ · ‖E) is a dense embedding, then
(E,H(µ), i, µ) is an abstract Wiener space.

Proof. See [28].

Finally, we characterize those AWS for which E is a Hilbert space.

Theorem 4.17 ([8, Prop. 4.59, Thm. 4.60, Cor. 4.62]). Let (H, ‖ · ‖H) be a separable
Hilbert space, νH its canonical cylinder measure, and ‖i(·)‖E a norm on H. Then the
following are equivalent

(1) ‖ · ‖E is a measurable norm w.r.t. (H, νH) and induced by an inner product, i.e.

‖ih‖E =
√
〈ih, ih〉E, ∀h ∈ H.

(2) ‖ · ‖E is induced by a positive definite, Hermitian, Hilbert–Schmidt class linear oper-
ator A on H, i.e.

‖ih‖E = ‖Ah‖H , ∀h ∈ H.
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Proof. “(2) ⇒ (1)” For every h ∈ H we have

‖ih‖E = ‖Ah‖H =
√
〈Ah,Ah〉H

i.e. ‖ · ‖E is induced by an inner product. To show that ‖ · ‖E is measurable, let ε > 0.
Choose an ONB (en)n∈N of H, choose nε s.t.

∞∑

n=nε+1

‖Aen‖2H
︸ ︷︷ ︸
=‖A|

(PεH)⊥‖2HS

< ε3, (4.13)

and define Pε as the orthogonal projection onto the subspace spanned by {e1, . . . , enε
}.

This is possible since A is Hilbert–Schmidt. For any orthogonal projection P s.t. P ⊥ Pε

we now have

νH

{
h ∈ H : ‖Pεh‖E > ε

}
= νH

{
h ∈ H : ‖APεh‖H > ε

}

= P
{
h ∈ H : ‖Aη‖H > ε

}
≤

E
[
‖AE‖2H

]

ε2
,

where η is an H-valued random variable which is standard normally distributed on the
subspace spanned by {e1, . . . , enε

} (this is analogous to the argument in formulas (4.9)-
(4.10)) and we applied Chebyshev’s inequality in the last step. The claim now follows by
(4.13) and

E
[
‖Aη‖2H

]
=

nε∑

i=1

E
[
|〈Aη, ei〉H |2

]

=
nε∑

i=1

E
[
|〈η, Aei〉H |2

]

=
nε∑

i=1

‖Aei‖2H

= ‖A|PH‖2HS ≤ ‖A|(PεH)⊥‖2HS

where in the last equality we used that P ⊥ Pε.

“(1) ⇒ (2)” Since ‖ · ‖E is a measurable norm, by Theorem 4.14 there exists an AWS

construction. The linear operator A := (i∗i)
1
2 satisfies

‖ih‖2E = 〈ih, ih〉E = 〈i∗ih, h〉E = 〈(i∗i) 1
2h, (i∗i)

1
2h〉E = 〈Ah,Ah〉E,

is positive definite since i and i∗ are injective, is Hermitian, and is Hilbert–Schmidt since
i∗i is:
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‖i∗i‖2HS =
∞∑

n=1

〈i∗ien, i∗ien〉H =
∞∑

n=1

〈ien, ien〉L2(E,µ) =
∞∑

n=1

∫

E

|〈ien, x〉E|2 dµ(x)

=
∞∑

n=1

∫

E

|〈i∗x, en〉H |2 dµ(x) =

∫

E

∞∑

n=1

|〈i∗x, en〉H |2 dµ(x) =

∫

E

‖i∗x‖2H dµ(x)

≤ ‖i∗‖2
∫

E

‖x‖2E dµ(x) <∞

where we used Fubini’s Theorem to interchange the sum and the integral, and Fernique’s
Theorem to show that the last expression is finite.

Remark 4.18. Example 4.10 is an instance of the above theorem.

4.4 Examples

Brownian Motion on [0, 1] The most important example of the AWS construction is
of course the classical Wiener space. In the cast of Definition 4.15 that is the separable
Banach space

(
C0[0, 1], ‖ · ‖∞

)
, the separable Hilbert space

(
H1

0 [0, 1], 〈·, ·〉H1
0 [0,1]

)
, the in-

clusion i : H1
0 [0, 1] →֒ C0[0, 1], and the classical Wiener measure which is an extension of

the canonical cylinder measure on
(
H1

0 [0, 1], 〈·, ·〉H1
0 [0,1]

)
.

Note that what was constructed in subsection 3.3.3 and in section 4.1 really are the same
objects, but seen from two different points of view. In subsection 3.3.3 we started with
the state space C0[0, 1] and the covariance structure Cov(Bs, Bt) = s ∧ t, 0 ≤ s, t ≤ 1
of Brownian motion, deduced the covariance form qµ, and then computed the Cameron–
Martin space

(
H(µ), 〈·, ·〉H(µ)

)
, which coincided with

(
H1

0 [0, 1], 〈·, ·〉H1
0 [0,1]

)
. In section 4.1,

we started from an ONB
{
sn,k : k ∈ I(n), n ∈ N

}
of the separable Hilbert space H1

0 [0, 1]
(and thus a canonical cylinder measure νH1

0 [0,1]
) and obtained a measure µ (the distribu-

tion of B =
∑∞

n=1

∑
k∈I(n) ξn,ksn,k) on the space C0[0, 1], which is the closure of H1

0 [0, 1]

w.r.t. the measurable norm ‖ · ‖∞ (see Proposition 4.13). Theorem 4.14 then revealed
that H1

0 [0, 1] coincides with the Cameron–Martin space of (C0[0, 1], µ) and that µ is an
extension of νH1

0 [0,1]
◦ i−1.

Remark 4.19. The fact that the Hilbert spaces of both constructions coincide is part of
the theory. The fact that the Banach spaces coincide is merely a result of our choice of
state space in subsection 3.3.3 and choice of measurable norm in section 4.1. In subsection
3.3.3 we could have just as well started with the space C[0, 1], instead of C0[0, 1], as the
state space of Brownian motion, while in section 4.1 we could have chosen a different
measurable norm (e.g. via Theorem 4.17) s.t. the resulting Banach space is contained in
C0[0, 1].

Brownian Bridge on [0, 1] See [8, Ex. 4.34]. A Brownian bridge (tied down at 1) is a
centred Gaussian process with covariance structure

Cov(Xs, Xt) = s ∧ t− st, s, t ∈ [0, 1].
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Figure 6: Sample paths of a Brownian bridge (tied down at 1).

It can be written as

Xt = Bt − tB1, t ∈ [0, 1]

and therefore has continuous sample paths that start at 0 a.s. The Cameron–Martin space
of its distribution is given by those functions h ∈ H1

0 [0, 1] for which the norm induced by

〈h1, h2〉 :=
∫ 1

0

[
h′1(t) +

h1(t)

1− t

] [
h′2(t) +

h2(t)

1− t

]
dt, h1, h2 ∈ H1

0 [0, 1],

is finite. Thus, according to Theorem 4.14, the distribution of a Brownian bridge may be
constructed as the distribution of

∞∑

n=1

ξnen,

where (en)n∈N is an ONB of the Cameron–Martin space and (ξn)n∈N is a sequence of iid
N (0, 1)-distributed, real-valued random variables.

Fractional Brownian motion on [0, 1] A fractional Brownian motion with Hurst
parameter H ∈ (0, 1) is a centred Gaussian process with covariance structure

Cov(Xs, Xt) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, s, t ∈ [0, 1].

For H = 1
2
this is standard BM. Its sample paths are continuous (with local Hölder

continuity controlled by the parameter H) and start at 0 a.s. The Cameron–Martin space
of its distribution and many other aspects are investigated in [5, Chap. 4].
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Ornstein–Uhlenbeck process on [0, 1] See [8, Ex. 4.33]. An Ornstein–Uhlenbeck
process (starting at 0) is a centred Gaussian process with covariance structure

Cov(Xs, Xt) =
σ2

2

(
exp

{
− |s− t|

}
− exp

{
− (t+ s)

})
, s, t ∈ [0, 1].

It satisfies the stochastic ODE

dXt = −Xt dt+ σ dBt, X0 = 0,

where (Bt)t∈[0,1] is a BM and σ > 0. Its sample paths are continuous and start at 0 a.s.
The Cameron–Martin space of its distribution is given by those functions h ∈ H1

0 [0, 1] for
which the norm induced by

〈h1, h2〉 :=
1

σ2

∫ 1

0

h′1(t)h
′
2(t) + h1(t)h2(t)dt, h1, h2 ∈ H1

0 [0, 1],

is finite.

5 Application to Large Deviations

5.1 Primer on Large Deviations

The following are essentially the introductory remarks of T. Bodineau’s talk “Nonequi-
librium Statistical Mechanics & Large Deviation Theory” at IHÉS [1].

Let (Xn)n∈N be a sequence of iid, real-valued, and square-integrable random variables
with E(X1) = 0 and Var(X1) = 1, defined on some probability space (Ω,F ,P). Then, by
the Strong Law of Large Numbers, the sample averages converge:

1

N

N∑

n=1

Xn → 0 = E[X1], N →∞, P- a.s.,

and hence for any x > 0

P

(∣∣∣∣∣
1

N

N∑

n=1

Xn

∣∣∣∣∣ ≥ x

)
→ 0, N →∞.

In other words, the probability of observing the sample average outside of (−x, x) goes
to 0 with an increasing number N of samples. We are looking for a quantitative de-
scription of these “large deviations”, i.e. we want to study the asymptotic behaviour of

P
(

1
N

∑N

n=1Xn ≥ x
)
for x ∈ R. An immediate upper bound can be constructed as follows:

Let (Xn)n∈N be as above with law L(Xn) = µ and additionally assume exponential inte-

grability, i.e. E
[
exp(λX1)

]
< ∞ for every λ ∈ R. Then for any x ∈ R and λ > 0 it is

true that
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P

(
1

N

N∑

n=1

Xn ≥ x

)
= P

(
λ

N∑

n=1

Xn ≥ λNx

)
= P

(
exp

{
λ

N∑

n=1

Xn

}
≥ exp {λNx}

)
.

Via Chebyshev’s inequality the last term can be bounded above by

E

[
exp

{
λ

N∑

n=1

Xn

}]
e−λNx = E

[
eλXn

]N
e−λNx.

Writing ψµ(λ) := E
[
eλXn

]
for the moment generating function of µ we obtain

P

(
1

N

N∑

n=1

Xn ≥ x

)
≤ exp

{
−N

[
λx− ln

(
ψµ(λ)

)]}
.

Via the Hölder inequality one can show that ln
(
ψµ(·)

)
is a convex function. Now, since

the above is true for arbitrary λ > 0, we can improve the bound to

P

(
1

N

N∑

n=1

Xn ≥ x

)
≤ exp

{
−NΛ∗

µ(x)
}
,

where Λ∗
µ is the Legendre transform of the logarithmic moment generating function

Λµ(·) = ln
(
ψµ(·)

)
of µ, given by

Λ∗
µ(x) := sup

λ>0

[
λx− ln

(
ψµ(λ)

)]
, x ∈ R.

Since Λ∗
µ ≥ 0, this implies that the probability of observing sample averages in the event

[x,∞) decays exponentially with N ∈ N. Rewriting, we have

lim sup
N→∞

1

N
ln

{
P

(
1

N

N∑

n=1

Xn ≥ x

)}
≤ −Λ∗

µ(x), x > 0.

One can show that −Λ∗
µ(x) is also a lower bound, ultimately giving

lim
N→∞

1

N
ln

{
P

(
1

N

N∑

n=1

Xn ≥ x

)}
= −Λ∗

µ(x), x > 0.

The Legendre transform of the logarithmic moment generating function of µ is convex,
lower semi-continuous, Λ∗

µ ≥ 0, and the normalizing sequence (N)N∈N goes to infinity. It
is a special case of the following general set-up.

Definition 5.1. Let S be a polish space, (µN)N∈N a sequence of probability measures on
S and (γN)N∈N ⊆ R a sequence s.t. γN →∞. Then a function I : S → [0,∞] is called a
rate function if

(1) I(x) ≥ 0 for every x ∈ S,
(2) I is lower semi-continuous, i.e. for every α ≥ 0 the level set {x ∈ S : I(x) ≤ α} is

closed.
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The rate function I is called good if for every α ≥ 0 the level set {x ∈ S : I(x) ≤ α}
is compact. The sequence (µN)N∈N is said to satisfy a large deviation principle with
rate function I and speed (γN)N∈N if for every A ∈ B(S)

− inf
x∈int(A)

I(x) ≤ lim inf
N→∞

{
1

γN
ln
[
µN(A)

]}
≤ lim sup

N→∞

{
1

γN
ln
[
µN(A)

]}
≤ − inf

x∈A
I(x),

where int(A) and A denote the interior and closure of A, respectively.

5.2 Large Deviations on Abstract Wiener Spaces

We would like to study large deviations for families of measures on separable Banach
spaces. To give a more concrete sense to “large deviations” there should be an analogue
of the Strong Law of Large Numbers, i.e. an event from which atypical observation
deviate. This role is played by the Strong Law of Large Numbers of Ranga Rao.

Theorem 5.2 (Ranga Rao). Let (E, ‖ · ‖E) be a separable Banach space and (Xn)n∈N
a sequence of iid, µ-distributed, E-valued random variables, defined on some probability
space (Ω,F ,P). If

∫
E
‖x‖E dµ(x) <∞, then there exists an mµ ∈ E s.t.

1

N

N∑

n=1

Xn → mµ P− a.s.

Moreover, mµ is the unique element in E s.t.

f
(
mµ

)
=

∫

E

f(x) dµ(x), f ∈ E∗,

and thus coincides with the mean of µ as in Definition 2.7.

Proof. See [7, Thm. 3.3.4.].

The classical theorem of Schilder establishes the existence of a large deviation principle for
the distribution of sample averages (µN)N∈N where µ is the classical Wiener measure on
C0[0, 1] (see [6, Thm. 5.2.3.] and see [7, Sec. 1.3] for the case of Brownian motion on [0,∞
which requires a slightly different state space). We want to generalize this to an abstract
Wiener measure on a separable Banach space. The proof relies on the Donsker–Varadhan
Theorem.

Theorem 5.3. (Donsker–Varadhan) Let (E, ‖ · ‖E) be a separable Banach space and
(Xn)n∈N a sequence of iid E-valued random variables with law L(X1) = µ ∈M1(E) s.t.

∫

E

exp
{
α‖x‖E

}
dµ(x) <∞, ∀α > 0. (5.1)

Then the family {µN}N∈N ⊆M1(E), defined by

µN = L
(

1

N

N∑

n=1

Xn

)
, N ∈ N,
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satisfies a large deviation principle with good, convex rate function

I(x) = inf
ν∈M1(E)
m(ν)=x

H(ν‖µ) = Λ∗
µ(x).

where H(·‖µ) : M1(E) → R is the relative entropy functional and Λ∗
µ is the Legendre

transform of the logarithmic moment generating function.

Proof. See [7, Thm. 3.3.11. & Ex. 3.3.12.].

Theorem 5.4. (Generalized Schilder) Let (E,H, i, µ) be an abstract Wiener space, where
µ is centred, and (Xn)n∈N a sequence of iid E-valued random variables with law L(X1) =
µ ∈M1(E). Then the family {µN}N∈N ⊆M1(E), defined by

µN = L
(

1

N

N∑

n=1

Xn

)
, N ∈ N,

satisfies a large deviation principle with good, convex rate function

I(x) =

{
1
2
‖i−1(x)‖2H , x ∈ H
∞, x 6∈ H . (5.2)

Proof. By Fernique’s Theorem (3.5), condition (5.1) in the Donsker–Varadhan Theorem
is satisfied and thus the existence of I is guaranteed. It is just left to show that I has the
claimed form. Firstly, notice that the logarithmic moment generating function of µ is

Λµ(f) = ln

{∫

E

exp
{
〈f, x〉E

}
dµ(x)

}
=

1

2
q(f, f), f ∈ E∗,

since µ is assumed to be centred. This is analogous to the case of a Gaussian measure on
Rn and the proof is similar to Theorem 3.4. Now let x ∈ i(H) ⊆ E. Then

Λ∗
µ(x) = sup

f∈E∗

{
〈f, x〉E − Λµ(f)

}

= sup
f∈E∗

{〈
f, i

(
i−1(x)

)〉
E
− Λµ(f)

}

= sup
f∈E∗

{〈
i∗(f), i−1(x)

〉
H
− 1

2
q(f, f)

}
(5.3)

= sup
f∈E∗

{〈
i∗(f), i−1(x)

〉
H
− 1

2
〈i∗(f), i∗(f)〉H

}
(5.4)

= sup
g∈H

{〈
g, i−1(x)

〉
H
− 1

2
〈g, g〉H

}
. (5.5)

From line (5.4) to line (5.5) we used that i∗(E) lies dense in H since i is injective, and
from line (5.3) to line (5.4) we used the following fact: Let h ∈ H be arbitrary. Then
since µ is centred,

q
(
f, h
)
= f(h) = 〈i∗f, h〉H = q

(
i∗f, h

)
, f ∈ E∗.
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Thus f = i∗f for every f ∈ E∗ and therefore C(f) = i∗(f) for every f ∈ E∗ since (·) is
an isomorphism between (K(µ), q) and (H, 〈·, ·〉H) with inverse C. Among those g ∈ H
with the same H-norm, the supremum in (5.5) is achieved when g = αi−1(x) for some
α ∈ R. The α maximizing (5.5) is

argmax
α∈R

{〈
αi−1(x), i−1(x)

〉
H
− 1

2

〈
αi−1(x), αi−1(x)

〉
H

}
= argmax

α∈R

{
α− 1

2
α2

}
= 1.

Hence Λ∗
µ(x) =

1
2
‖i−1(x)‖2H for every x ∈ i(H) ⊆ E. Now assume x 6∈ i(H). Then, due

to the fact that H coincides with the Cameron–Martin space of (E, µ) (see Theorem 4.14
(2)), we have

Λ∗
µ(x) = sup

{
〈f, x〉E − Λµ(f) : f ∈ E∗

}

≥ sup
{
〈f, x〉E −

1

2
q(f, f) : f ∈ E∗, q(f, f) = 1

}

=∞.

A Remarks on Degeneracy and Support

In the following we will only consider the case of centred Gaussian measures on separable
Banach spaces. As mentioned in Remark 3.13, a (highly) degenerate Gaussian measure
can make the theory trivial, which is why it is often assumed that Gaussian measures are
non-degenerate. However, there are interesting examples of (mildly) degenerate Gaussian
measures such as the distribution of a Brownian bridge on [0, 1]. The following remarks,
largely the ones given in [8, Sec. 4], will show that the degenerate case can essentially be
reduced to the non-degenerate case.

Proposition A.1. Let (E, ‖ · ‖E) be a separable Banach space and µ a degenerate centred
Gaussian measure on σ(E;E∗). Then there exists a closed subspace E0 ⊆ E s.t.

(1) (E0, ‖ · ‖E) is a separable Banach space,

(2) µ(E0) = 1,

(3) µ0 := µ|E0 is a non-degenerate centred Gaussian measure on B(E0),

(4) the Cameron–Martin space H(µ) of (E, µ) is contained in E0 and coincides with the
Cameron–Martin space H(µ0) of (E0, µ0).

Proof. Define

E0 :=
⋂

f∈E∗

f∈ker q

ker f. (A.1)

(1) Since every f ∈ E∗ is a bounded linear functional the kernel ker f is closed in E, hence
the intersection is closed and thus E0 is closed in E. Thus E0 is also a separable Banach
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space.

(2) Note that f ∈ ker q implies that f = 0 µ-a.s. since

q(f, f) =

∫

E

|f |2dµ = 0

So each set in the intersection on the right hand side of equation (A.1) has measure 1.
Hence it is sufficient to show that the intersection is countable. Since E is separable,
the weak∗ topology on the unit ball of its dual is also separable and metrizable.12 In
particular, ker q ∩ Bweak∗

1 (0) has a countable dense subset {fn}n∈N. We now claim

E0 =
⋂

n∈N

ker fn. (A.2)

The inclusion “⊆” is clear. For the other direction, let x ∈ E be s.t. fn(x) = 0 for every
n ∈ N and let f ∈ ker q be arbitrary. Since {fn}n∈N lies dense in ker q∩Bweak∗

1 (0), we may
choose a subsequence {fnk

}k∈N s.t. fnk
converges to f

‖f‖E∗
in the weak∗ topology when

k → ∞. Then in particular 0 = fnk
(x) → f(x) and hence f(x) = 0. Thus x also lies in

the left hand side of equation (A.2), which is what was to be shown.

(3) Note firstly that the covariance form q0 on E
∗
0 induced by µ|E0 agrees with the restric-

tion of q to E0. That is, for every f0 ∈ E∗
0 and f ∈ E∗ s.t. f |E0 = f0 we have

q0(f0, f0) =

∫

E0

|f0|2dµ0 =

∫

E

|f |2dµ = q(f, f),

since µ(E0) = 1 and thus µ(E \E0) = 0. Now assume f0 ∈ E∗
0 s.t. q0(f0, f0) = 0, use the

Hahn–Banach Theorem to choose a bounded extension f ∈ E∗, and note that q(f, f) = 0.
By definition E0 ⊆ ker f , so f vanishes on all of E0, and hence f0 = f |E0 is the zero func-
tional, which proves the claim. To see that µ|E0 is Gaussian, for any f0 ∈ E∗

0 use the
Hahn–Banach Theorem to choose an extension of f0 to all of E, use that µ(E \ E0) = 0,
and that µ is Gaussian.

(4) Let h ∈ E s.t. ‖h‖H(µ) <∞. Then, since µ is assumed to be centred, for any f ∈ E∗

with q(f, f) = 0 we have f(h) = 0 since otherwise

‖h‖H(µ) = sup

{
|f(h)|√
q(f, f)

: f ∈ E∗, f 6= 0

}
≥ |f(h)|√

q(f, f)
=∞.

Thus h ∈ E0 by definition of E0. It is left to show that for any h ∈ H we have ‖h‖H(µ) <∞
if and only if ‖h‖H(µ0) <∞. For the direction “⇒” restrict functionals in E to functionals
on E0 (in which H(µ) lies). For the other direction use Hahn–Banach to extend any
functional on E0 to one on E.

12[22, Thm. 2.6.20] shows that the unit ball in the dual of a normed space is metrizable. By the
Banach–Alaoglu Theorem the unit ball is weak∗ compact. Thus, as a compact metric space, [14, Thm.
5.8] shows that unit ball is separable.
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Moreover, E0, as defined above, coincides with the topological support of µ and, if µ is
non-degenerate, then ker q = 0 and thus E0 = E.

Proposition A.2. Let (E, ‖ · ‖E) be a separable Banach space and µ a centred Gaussian
measure on σ(E;E∗). Then

suppµ = E0 :=
⋂

f∈ker q

ker f, (A.3)

where suppµ denotes the weak support of µ, i.e. the smallest weakly closed subset with
full measure.

Proof. Since for all f ∈ ker q we have f = 0 µ-a.s., each set in the intersection on the right
hand side of (A.3) has full measure and is weakly closed because f is weakly continuous.
Hence “⊆” is clear. For the other direction, recall that the topological support of a
measure can be characterized as the set of points x ∈ E s.t. each open neighbourhood
has positive measure. We will show that for any x in the right hand side of (A.3) and any
ε > 0 and f1, . . . , fn ∈ E∗ the set

Bε,f1,...,fn(x) :=
n⋂

i=1

f−1
i

(
Bε

(
fi(x)

))
=



f1
...
fn




−1

( n×
i=1

(
fi(x)− ε, fi(x) + ε

))
(A.4)

has positive measure. Since the sets of the form (A.4) form a basis of the weak topology
and thus any open neighbourhood of x needs to contain a set of that form, the monotonic-
ity of µ gives the result. Assume w.l.o.g. that f1, . . . , fk ∈ ker q for some 0 ≤ k ≤ n. Then
by the assumption of x being contained in the right hand side of (A.3) and (f1, . . . , fn)
being jointly Gaussian with distribution N (0,Σ) and f1, . . . , fk degenerate, we have

µ(Bε,f1,...,fn) = µ






f1
...
fn




−1(
n×

i=1

(fi(x)− ε, fi(x) + ε)

)


=

∫
(
0,...,0,fk+1(x),...,fn(x)

)
+(−ε,ε)n

dN (0,Σ)

=

∫ fn(x)+ε

fn(x)−ε

. . .

∫ fk+1(x)+ε

fk+1(x)−ε

fN (0,Σ′) dxk+1 . . . dxn > 0,

where Σ′ is the (n− k)× (n− k)-block matrix in Σ corresponding to the non-degenerate
entries and fN (0,Σ′) is the density of N (0,Σ′).

From the above two propositions, we can conclude that the Cameron–Martin space is
contained in the support of µ. Moreover, the support of µ is the ‖ · ‖E-norm-closure of its
associated Cameron–Martin space since H lies dense in E, E0 is a closed subspace of E,
and H ⊆ E0.
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B Notation

Acronyms & Abbreviations

TVS topological vector space

BM Brownian motion

iid independent and identically distributed

AWS abstract Wiener space

ONB orthonormal basis

s.t. such that

w.r.t. with respect to

w.l.o.g. without loss of generality

loc. co. locally convex

i.e. id est (in other words)

e.g. exempli gratia (for example)

z.B. zum Beispiel

a.e./a.s. almost every/ almost surely

sep. separable
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B

N
O
T
A
T
IO

N

Rn, n ≥ 0 n-dimensional real space

E ′ algebraic dual space of a vector space E, i.e. the vector space of linear functionals E → R

(E, τ)∗ continuous dual space of a TVS (E, τ), i.e. the vector space of continuous linear functionals (E, τ)→ R

(E, τ) locally convex TVS over R; depending on the context a Banach space or a Hilbert space

M(Ω,F) space of finite signed measures on a measurable space (Ω,F)
C(Ω, τ),

(
Cx(Ω, τ)

)
space of continuous real-valued functions on a topological space (Ω, τ) (starting at x ∈ Ω)

H1[0, 1],
(
H1

0 [0, 1]
)

first Hilbert-Sobolev space on the unit interval [0, 1] (of functions starting at 0)

σ(A) smallest sigma-algebra containing the family of sets A, i.e. the sigma-algebra generated by A
σ(E;F ) smallest sigma-algebra on E making all functionals E → R in F measurable

B(E) Borel sigma-algebra on the topological space (E, τ)

C(E) algebra of cylinder sets of a locally convex TVS (E, τ)

Λµ / Λ∗
µ logarithmic generating function of a measure µ and its Legendre transform

evt evaluation functional at t, which acts on a function via f 7→ f(t)

φX characteristic function of a real-valued random variable X

ψX / ψµ moment generating function of a real-valued random variable X or a measure µ

X ∼ µ, µ = L(X) the random variable X has distribution µ

‖ · ‖TV total variation norm

N (µ,Σ) Gaussian measure with expectation µ and covariance matrix Σ

νH canonical cylinder measure of a separable Hilbert space (H, 〈·, ·〉H)
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[26] Claudia Prevot and Michael Röckner. A Concise Course on Stochastic Partial Dif-
ferential Equations, volume 13. Springer Science & Business Media, 2013.

[27] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics II: Fourier
Analysis, Self-Adjointness. Harcourt Brace Jovanovich, 1975.

[28] Hiroshi Sato. Gaussian Measure on a Banach Space and Abstract Wiener Measure.
Nagoya Math. Journal, 36, 1969.

[29] Helmut H. Schaefer. Topological Vector Spaces. Springer, 5th edition, 1986.

[30] N.N. Vakhania, V.I. Tarieladze, and S.A. Chobanyan. Probability Distributions on
Banach Spaces. D. Reidel Publishing Company, 1987.

[31] Dirk Werner. Funktionalanalysis. Springer, 2011.

[32] Norbert Wiener. Differential space. J. Math. & Phys., page 131–174, 1923.


	Introduction
	Naive Considerations
	Constructive Quantum Field Theory
	Malliavin Calculus
	Mathematical Finance & Stochastic PDE
	Large Deviations

	Measures on Locally Convex Spaces
	Choice of Sigma Algebra
	Momenta
	Characteristic Functional

	Gaussian Measures
	First Definitions
	Fernique's Theorem
	Tail Estimates for Gaussian Measures
	Embeddings of (E, ) -3muLp(E, )
	Representability of m and q
	Regularity of the Covariance Operator

	Cameron–Martin Space
	Generalities
	Special Case: Finite-Dimensional Space
	Special Case: Classical Wiener Space

	Cameron–Martin Theorems
	Recapitulation for Separable Frechet Spaces

	Abstract Wiener Space
	Classical Wiener Space
	Cylinder Measures
	Construction via Measurable Norms
	Examples

	Application to Large Deviations
	Primer on Large Deviations
	Large Deviations on Abstract Wiener Spaces

	Remarks on Degeneracy and Support
	Notation

