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Abstract

Fractional Brownian motion (fBM) is a one parameter generalization of Brownian motion

which can be seen as the convolution of white noise with a power kernel tH−
1
2 , splitting

fBM into three quite distinct classes: 0 < H < 1
2
, H = 1

2
, and 1

2
< H < 1. Originally, fBM

was introduced by B. Mandelbrot and J. Van Ness as a continuous time model for a long-
range dependent stochastic process, specifically for the study of economics, hydraulics, and
fluctuation in solids. From a probabilistic point of view, fBM is particularly interesting
since it is neither a Markov process nor a semi-martingale. We will show both of these
results alongside some other probabilistic and analytic properties.
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1 Motivation - Rough Volatility

In a first model for the behaviour of derivatives prices, the value of an underlying asset S
is assumed to satisfy

dSt = µtStdt+ σtStdBt, t ≥ 0,

where (St)t≥0 is the price of the asset, (Bt)t≥0 a Brownian motion, (µt)t≥0 is a drift, and
(σt)t≥0 is the volatility of the asset. Classically, σ is assumed to be constant or at least
deterministic (e.g. Black-Scholes or Cox–Ross–Rubinstein). A better model is provided
by assuming σ itself to be random, leading to so-called stochastic volatility model (e.g.
Hull-White, Heston, SABR, CEV, GARCH, ...). Now the volatility itself satisfies

dσt = f(t, σt)dt+ g(t, σt)dB
′
t, t ≥ 0,

where f, g : [0,∞) × R → R are measurable and (B′t)t≥0 is another Brownian motion
(possibly related to (Bt)t≥0). While such approaches give better models, there is (recent)
evidence that Brownian motion is not the best choice for the driver of volatility (see [7,
Sec. 2]). Across many markets and asset classes one can observe that for a time lag ∆ ≥ 0

E[| ln(σt+∆)− ln(σt)|α] ≈ C∆αH ,

where H is not equal to 0.5 (as for Brownian motion), but rather H ≈ 0.13. If we now
suppose that the driver of log-volatility is continuous and has stationary increments (which
are both very reasonable assumptions), we immediately arrive at fractional Brownian
motion (fBM) with Hurst parameter H ≈ 0.13 as a suitable driver.

2 Recap on Stochastic Processes

Recall that a stochastic process is a collection of random variables X = (Xt)t∈T , defined
on some probability space (Ω,F ,P), and indexed by an indexing set T , which we will
call time. In the following, T will usually be N, R, [0,∞) or [0, 1]; although, in the
introduction, any polish space (separable and complete metric space) is sufficient. A
stochastic process is called Gaussian if for every n ∈ N and t1, . . . , tn ∈ T the random
vector (Xt1 , . . . , Xtn) has a Gaussian distribution on Rn. The collection of distributions of
these random vectors is called the set of finite dimensional distributions of X. The
functions

T → R T × T → R
and

t 7→ E
[
Xt

]
(s, t) 7→ Cov

(
Xs, Xt

)
are called the expectation and covariance structure, respectively, and they charac-
terize a Gaussian process, i.e. if two Gaussian processes have the same expectation and
covariance structure, then they have the same finite dimensional distributions. This is
because for any n ∈ N and t1, . . . , tn ∈ T the random vector (Xt1 , . . . , Xtn) has the
characteristic function
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∫
Ω

exp

{
i

n∑
j=1

Xtjξj

}
dP︸ ︷︷ ︸

= char. function

= exp

{
i

n∑
j=1

ξjE[Xtj ]−
1

2

∑
1≤i,j≤n

Cov
(
Xti , Xtj

)
ξiξj

}
, ξ ∈ Rn

and the characteristic function of random vector characterizes its distribution uniquely.
We will use the following notation interchangeably[

Xt

]
(ω) ≡ X(ω, t) ≡ Xt(ω), ω ∈ Ω, t ∈ T.

If either of the two arguments of X is missing, we mean the function taking that argument
as its input, i.e.

X(ω) : T → R Xt : Ω→ R
and

t 7→ Xt(ω) ω 7→ Xt(ω)

2.1 Notions of Equivalence

As opposed to ordinary random variables, for stochastic processes, there are multiple
reasonable notions of equivalence. Two stochastic processes X = (Xt)t∈T , Y = (Yt)t∈T ,
defined on the same probability space (Ω,P) are said to

(1) have the same finite dimensional distributions, if for every n ∈ N and t1, . . . , tn ∈
T the random vectors (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn) have the same distribution; we
write X ∼ Y .1 This notion also applies if the two processes are defined on different
probability spaces.

(2) be modifications of each other, if for every t ∈ T : P (ω ∈ Ω : Xt(ω) = Yt(ω)) = 1.

(3) be indistinguishable, if P
{
ω ∈ Ω : X(ω) = Y (ω)

}
= 1.

In general, (3) ⇒ (2) ⇒ (1). A counter-example showing (1) 6⇒ (2) is given by two
independent Brownian motions. A counter-example to (2) 6⇒ (3) is the following.

Example 2.1 ((2) 6⇒ (3)). Let A be a random variable with exp(1)-distribution, let
0 = (0)t≥0 be the constant 0-process, and define Y = (Yt)t≥0 by

Yt(ω) =

{
1, A(ω) = t

0, A(ω) 6= t.

Then for every t ≥ 0

P
{
Yt = 0

}
= P

{
ω ∈ Ω : A(ω) 6= t

}
= 1,

1We will use the same symbol to denote that two functions are asymptotically equivalent whenever
the difference is clear.
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where in the last equality we used the fact that A is exp(1)-distributed and thus has
density w.r.t. the Lebesgue measure on R. Hence Y is a modification of X. However,
since for every ω there exists a unique t ≥ 0 s.t. A(ω) = t, every sample path of Y is
non-zero at some t ≥ 0. Thus

P(Yt = 0,∀t ≥ 0) = 0.

In this example, X had continuous sample paths P-a.s. and Y had discontinuous sample
paths P-a.s., showing that two processes may have drastically different sample paths,
despite being modifications of each other. However, as the next proposition shows, if the
two processes are continuous, this cannot happen.

Proposition 2.2. Let X = (Xt)t∈T , Y = (Yt)t∈T be two stochastic processes with P-a.s.
continuous sample paths that are modifications of each other i.e. for every t ∈ T : P(Xt =
Yt) = 1. Then X and Y are indistinguishable.

Proof. Let S denote a dense countable subset of T , which exists since we assumed S to
be Polish. Then since X and Y are continuous

{ω ∈ Ω : X(ω) = Y (ω)} =
⋂
t∈T

{ω ∈ Ω : Xt(ω) = Yt(ω)} =
⋂
t∈S

{ω ∈ Ω : Xt(ω) = Yt(ω)} .

Since X and Y are modifications of each other, each set on the right hand side has full
measure, and since S is countable, the intersection has full measure too.

Corollary 2.3. If a process X has a continuous modification X̃, then this modification
is unique among modifications (up to indistinguishably).

On R, both Proposition 2.2 and 2.3 can be generalized to cadlag functions, since two
cadlag functions that agree on Q agree on R.

2.2 Hermite Polynomials

Let (Xt)t≥0 be a Gaussian process and A a real-valued N (0, 1)-distributed random vari-
able. For the study of functionals of A, i.e. random variables of the form F (A), where
F : R → R is a measurable function, it is very convenient to study the space L2(R, γ1)
where γ1 = N (0, 1) is the standard normal distribution. This is because F (A) lies in
L2(Ω,P) precisely if F lies in L2(R, γ1). To see this, note that

‖F (A)‖2
L2(Ω,P) = EP[F (A)2] =

∫
Ω

F (A(ω))2dP(ω) =

∫
R
F (x)2dγ1(x) = Eγ1 [F 2] = ‖F‖2

L2(R,γ1).

Remark 2.4. But what about functionals of a N (0, σ2)-distributed random variable A
when σ2 6= 1? In that case F (A) is square integrable precisely when F ( 1

σ
·) lies in L2(R, γ1).

But what about functionals of a random vector (Xt1 , . . . , Xtn)? There are very similar
constructions on Rn.
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Consider the operator ∂̃ : C∞c (R)→ C∞c (R), defined by[
∂̃(φ)

]
(x) = xφ(x)− φ′(x), φ ∈ C∞c (R), x ∈ R.

It is the adjoint of the usual linear differentiation operator φ 7→ φ′ under the inner product
on L2(R, γ1) (not L2(R, λ)!). The set of Hermite polynomials (Hk)k∈N is then defined by

H0 ≡ 1 and Hk = ∂̃k(H0) for every k ∈ N.

Lemma 2.5. Let (Hk)k∈N denote the Hermite polynomials on R. Then

1.
(
Hk√
k!

)
k∈N

is an orthonormal basis of L2(R, γ1).

2. for any Gaussian random vector (U, V ) with U ∼ V ∼ N (0, 1) and any k, l ∈ N we
have

E[Hk(U)Hl(V )] =

{
k!E[UV ]k, k = l

0, otherwise.

Proof. See [11, Prop. 1.3(2) & (3)].

3 Definition, Existence, and Basic Properties

3.1 Definition

In their original paper, B.B. Mandelbrot and J.W. Van Ness define fBM as (3.5) and then
deduce properties (3.1) and (3.2). We take the opposite approach since it agrees better
with our introduced motivation and was arguable the raison d’être for fBM (see [9, Sec.
3]).

Definition 3.1. A fractional Brownian motion with Hurst parameter H ∈ (0, 1) is
a continuous Gaussian process BH = (BH)t≥0 which has stationary increments, i.e. for
every t0 ≥ 0 (

BH
t0+t −BH

t0

)
t≥0
∼
(
BH
t

)
t≥0

, (3.1)

is H-self similar, i.e. for any α > 0(
BH
αt

)
t≥0
∼
(
αHBH

t

)
t≥0

, (3.2)

starts at 0 and is normalized, i.e.

BH
0 = 0 P− a.s. and Var

[
BH

1

]
= 1.

This definition uniquely determines the expectation and covariance structure, and thus
the finite dimensional distributions of BH :

Let t > 0 be arbitrary. Then from stationarity, with t0 = t > 0, we get
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E
[
BH

2t −BH
t

]
= E

[
BH
t

]
⇒ E

[
BH

2t

]
= 2E

[
BH
t

]
and from self-similarity

E
[
BH

2t

]
= 2HE

[
BH
t

]
⇒ 2HE

[
BH
t

]
= 2E

[
BH
t

]
.

Since H 6= 1, this implies E[BH
t ] = 0 for every t > 0. Furthermore, E[BH

0 ] = 0 by
assumption. For the covariance structure, let s, t ≥ 0 be arbitrary. Then

E[BH
t B

H
s ] =

1

2

(
E
[
(BH

t )2
]

+ E
[
(BH

s )2
]
− E

[
(BH

t −BH
s )2
])

=
1

2

(
E
[
(tHBH

1 )2
]

+ E
[
(sHBH

1 )2
]
− E

[
(BH
|t−s|)

2
])

=
1

2

(
E
[
(tHBH

1 )2
]

+ E
[
(sHBH

1 )2
]
− E

[
(|t− s|HBH

1 )2
])

=
1

2

t2H E
[(
BH

1

)2
]

︸ ︷︷ ︸
=1

+s2H E
[(
BH

1

)2
]

︸ ︷︷ ︸
=1

−|t− s|2H E
[
(BH

1 )2
]︸ ︷︷ ︸

=1


=

1

2

(
t2H + s2H − |t− s|2H

)
,

where for the first two terms we used self-similarity, and for the latter term we used sta-
tionarity of increments and then self-similarity. For the last line, we used the assumption
of E

[
(BH

1 )2
]

= 1. In particular, we conclude that for t ≥ 0

E
[
BH
t

]
= 0 and Var

[
BH
t

]
= t2H . (3.3)

In fact, we may extend this definition to include the case H = 1, where

B1
t = tB1

1 , t ≥ 0.

However, in the following we will still restrict ourselves to 0 < H < 1.

We have seen that one can deduce the expectation and covariance structure from the
defining features of fBM. Conversely, one can deduce the defining features (and some
other basic properties) from the expectation and covariance structure.

Proposition 3.2. Let X = (Xt)t≥0 be a centred Gaussian process with

Cov(Xs, Xt) =
1

2

(
|s|2H + |t|2H − |s− t|2H

)
.

Then the following are true:

(1) For every t ≥ 0 the random variable Xt has distribution N (0, t2H).

(2) Self similarity: for every α > 0 : (Xαt)t≥0 ∼ (αHXt)t≥0.

(3) Stationary increments: For every t0 ≥ 0, (Xt0+t −Xt0)t≥0 ∼ (Xt)t≥0.
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(4) Time inversion: (t2HX(1/t))t>0 ∼ (Xt)t>0.

Proof. 1. For every t ≥ 0 : E(Xt) = 0 by definition. For the variance we have

Var(Bt) = Cov(Xt, Xt) =
1

2

t2H + t2H − |t− t|2H︸ ︷︷ ︸
=0

 = t2H .

2. Let α > 0. We want to show that the expectation and covariance structures of the
two processes coincide. Let s, t ≥ 0 be arbitrary. Then

αH E
[
Xαt

]︸ ︷︷ ︸
=0

= 0 = E
[
Xαt

]
and

Cov
(
Xαs, Xαt

)
=

1

2

(
(αt)2H + (αs)2H − |αs− αt|2H

)
= α2H 1

2

(
t2H + s2H − |s− t|2H

)
= α2H Cov

(
Xs, Xt

)
= Cov

(
αHXs, α

HXt

)
.

3. Let t0 > 0 and s, t ≥ 0 be arbitrary. Then

E
[
Xt0+t −Xt0

]
= E

[
Xt0+t

]
− E

[
Xt0

]
= 0 + 0 = 0 = E

[
Xt

]
.

Substituting t1 = t0 + t, t2 = t0 + s, and s1 = s2 = t0 into ((3.8)) (or making a short
computation) gives

Cov
(
BH
t0+t −BH

t0
, BH

t0+s −BH
t0

)
=

=
1

2

[
|t0 − (t0 + s)|2H + |(t0 + t)− t0|2H − |(t0 + t)− (t0 + s)|2H − |t0 − t0|2H

]
=

1

2

[
|s|2H + |t|2H − |t− s|2H

]
= Cov

(
BH
t , B

H
s

)
4. Omitted - similar to the above.

3.2 Existence

We have not yet shown that such a process exists in the first place. The usual way of
going about this would be to establish the existence as a coordinate process on R[0,∞) and
then using the Kolmogorov–Centsov Continuity Theorem (Thm. 4.1) to deduce that it
has a version with continuous sample paths. However, we will choose a different route
and explicitly give fBM as a Wiener functional w.r.t. two-sided Brownian motion.
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We define two-sided Brownian motion X = (Xt)t∈R via

Bt :=

{
B

(1)
t , t ≥ 0

B
(2)
−t , t < 0

,

where B(1) and B(2) are two independent Brownian motions defined on a probability
space (Ω,F ,P). The process B is clearly not a martingale w.r.t. its generated filtration
(Ft)t∈R := (σ{Xs : s ≤ t})t∈R since, for instance,

E[B1|F−1] = E
[
B

(1)
1

∣∣∣σ {B(2)
−s : s ≤ −1

}]
= E[B1] = 0 6= B−1.

Thus an integral of the form
∫
f(t)dBt is not defined in the Ito sense. For functions

f ∈ L2(R) we thus define∫
R
f(t)dBt :=

∫ ∞
0

f(t)dB
(1)
t +

∫ ∞
0

f(−t)dB(2)
t .

With this definition,
∫
f(t)dBt is well defined when f ∈ L2(R), the Ito isometry holds in

the sense that for every t ∈ R

E

[(∫ t

−∞
f(s)dBs

)2
]

=

∫ t

−∞
f(s)2ds,

and we have

E
[∫

R
f(s)dBs

]
= 0. (3.4)

However as opposed to the classical Ito integral, (
∫ ·
a
f(s)dBs)t∈R may not be a martingale

- take for instance f := 1[−1,1].

Theorem 3.3. (fBM as a Wiener functional) Let (Bt)t∈R be a two-sided Brownian motion
and let H ∈ (0, 1). Then the stochastic process X = (Xt)t≥0 defined by

Xt :=
1

c(H)

∫
R
(t− s)H−

1
2 1{s<t} − (−s)H−

1
2 1{s<0}dBs, t ≥ 0, (3.5)

with

c(H)2 :=
1

2H
+

∫ ∞
0

[
(1 + w)H−

1
2 − wH−

1
2

]2

dw, (3.6)

is continuous, starts at 0, has expectation and covariance structure

E[Xt] = 0 and Cov(Xt, Xs) =
1

2

[
t2H + s2H − (t− s)2H

]
, 0 ≤ s ≤ t,

respectively, and is thus a fractional Brownian motion with Hurst parameter H.
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Proof. Firstly, as a sum of two processes defined by Ito integrals, X is continuous, and
setting t = 0 gives X0 = 0 P-a.s.

Secondly, we show that the integrals in (3.5) and (3.6) are well-defined i.e. that the
integrand of (3.5) is square integrable and that (3.6) is finite. The integrand in (3.5) can
be rewritten as

(t− u)H−
1
2 1{u<0} − (−u)H−

1
2 1{u<0}︸ ︷︷ ︸

=:ft(u)

+ (t− u)H−
1
2 1{0<u<t}︸ ︷︷ ︸

=:gt(u)

.

Since ft and gt have disjoint support, this allows us to analyse them separately. The
square integral of gt is finite since 2(H − 1

2
) > −1 for any choice H ∈ (0, 1). The square

of ft has the asymptotic2

[
(t− u)H−

1
2 − (−u)H−

1
2

]2

∼
(
H − 1

2

)2

t2(−u)2H−3, as u→ −∞,

and is thus integrable since 2H − 3 < −1. Setting t = 1 and applying the transformation
u 7→ −u, we deduce the finiteness of (3.6) from the square integrability of ft.

Thirdly, we have E[Xt] = 0 for every t ≥ 0. Using the Ito isometry, we see that for any
0 ≤ s < t

E[(Xt −Xs)
2] =

1

c(H)2

∫
R

[
(t− u)H−

1
2 1{u<t} − (s− u)H−

1
2 1{u<s}

]2

du.

Substituting u = −(t− s)w + s (and du = (t− s)dw) yields

=
1

c(H)2

∫
R

[(
(t− s)(1 + w)

)H− 1
2 1{w>−1} −

(
(t− s)w

)H− 1
2 1{w>0}

]2

(t− s)dw

=
(t− s)2H

c(H)2

∫
R

[
(1 + w)H−

1
2 1{w>−1} − wH−

1
2 1{w>0}

]2

dw

=
(t− s)2H

c(H)2

∫ ∞
0

[
(1 + w)H−

1
2 − wH−

1
2

]2

dw +

∫ 0

−1

(1 + w)2H−1dw︸ ︷︷ ︸
= 1

2H︸ ︷︷ ︸
=c(H)2

= (t− s)2H .

The result now follows by

E
[
X2
t

]
= E

[
(Xt − X0︸︷︷︸

=0 a.s.

)2
]

= |t|2H , t ≥ 0, (3.7)

and

E
[
(Xt −Xs)

2
]

= E
[
X2
t

]
− 2 Cov(Xt, Xs) + E

[
X2
s

]
.

2Proof omitted.
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Lastly, Var(X1) = 1 follows from (3.7).

Corollary 3.4. Fractional Brownian motion exists.

3.3 Increment Process

Alongside fBM itself, we define its process of increments (with lag ∆ ≥ 0) by(
BH,∆
t

)
t≥0

:=
(
BH
t+∆ −BH

t

)
t≥0

.

This process is still centred, but its covariance structure is more involved: Generally, let
t1, s1, t2, s2 ≥ 0. Then

Cov
(
BH
t1
−BH

s1
, BH

t2
−BH

s2

)
= E

[(
BH
t1
−BH

s1

) (
BH
t2
−BH

s2

)]
= E

[
BH
t1
BH
t2

]
− E

[
BH
t1
BH
s2

]
− E

[
BH
s1
BH
t2

]
+ E

[
BH
s1
BH
s2

]
=

1

2

[
|t1|2H + |t2|2H − |t1 − t2|2H − |s1|2H − |t2|2H + |s1 − t2|2H

− |t1|2H − |s2|2H + |t1 − s2|2H + |s1|2H + |s2|2H − |s1 − s2|2H
]

=
1

2

[
|s1 − t2|2H + |t1 − s2|2H − |t1 − t2|2H − |s1 − s2|2H

]
(3.8)

For the increment process this gives

Cov
(
BH,∆
s , BH,∆

t

)
= Cov

(
BH
s+∆ −BH

s , B
H
t+∆ −BH

t

)
=

1

2

[
(|s− t−∆|)2H + (|s− t+ ∆|)2H − 2|s− t|2H

]
. (3.9)

It immediately follows that the covariance structure of BH,∆ is invariant under any shift
t 7→ t + h with h ≥ 0, meaning that for any lag ∆ ≥ 0, any shift h ≥ 0, and any sample
points t1, . . . , tn,

(
BH
t1+∆+h −BH

t1+h, . . . , B
H
tn+∆+h −BH

tn+h

)
∼
(
BH
t1+∆ −BH

t1
, . . . , BH

tn+∆ −BH
tn

)
(3.10)

Either from (3.10) or from (3.1) and (3.3) we deduce that for any lag ∆ ≥ 0 and any

sample point t ≥ 0 we have Var
(
BH,∆
t

)
= ∆2H .

3.4 Autocovariance

One of the defining features of fBM with H 6= 1
2
, setting it apart from other widely studied

processes (e.g. standard Brownian motion), is the fact that its increments have non-trivial
covariance; and even more is true. In their seminal paper, B.B. Mandelbrot and J.W.
Van Ness point out that:

The basic feature of fBm’s is that the ”span of interdependence” between their
increments can be said to be infinite. - [9, p. 422]
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Recall that a stochastic process (Xt)t≥0 is called stationary if (Xt+h)t≥0 ∼ (Xt)t≥0 for
any shift h ∈ R.3 While an fBM BH is very much non-stationary (among other reasons
because its variance is non-constant), its increment process BH,∆ is - this was shown in
(3.10). Recall that the autocovariance function ρ of a centred stationary stochastic
process (Xt)t≥0 is defined by

ρ(t− s) := Cov(Xt−s, X0) = Cov(Xt, Xs), 0 ≤ s ≤ t. (3.11)

Requiring stationarity of X ensures that the second equality holds (by shifting with
−s) and that ρ is well-defined. Note that due to the symmetry of Cov(·, ·), we have
ρ(x) = ρ(|x|) for every x ∈ R.

Definition 3.5. We say that a stationary stochastic process has long-range dependence
if

∞∑
n=1

ρ(n) =∞ .

Many stochastic processes, such as the increment process of Brownian motion (or any
Levy process) or a Poisson process, exhibit no long range dependence. In fact, the auto-
covariance function of the increment process with lag ∆ ≥ 0 of any stochastic process with
stationary and independent increments is 0 unless |s − t| < ∆. fBM, on the other hand,
does not posses this property when 1

2
< H < 1, making it very attractive for modelling

phenomena with correlation across long periods of time.

Lemma 3.6. Let BH = (BH
t )t≥0 be an fBM. Then

(
BH
t+1 −BH

t

)
t≥0

is stationary and

ρH,1(x) =
1

2

(
|x+ 1|2H + |x− 1|2H − 2|x|2H

)
∼ H(2H − 1)x2H−2, x→∞, (3.12)

where ρH,1 is the autocovariance function of (BH
t+1 −BH

t )t≥0.

Proof. Stationarity was shown in (3.10). Substituting x = s− t and ∆ = 1 in ((3.9)) gives
the first equality. For the asymptotic, let ε := 1

x
. Then

ρH,1(x) =
1

2
x2H

[
|1 + ε|2H + |1− ε|2H − 2

]
(3.13)

Taylor expanding (1± ε)2H around ε = 0 as

(1± ε)2H = 1± 2Hε+H(2H − 1)ε2 + o(ε2)

and plugging it into (3.13) gives

ρH,1(x) =
1

2
x2H

[
1 + 2Hε+H(2H − 1)ε2 + o(ε2) + 1− 2Hε+H(2H − 1)ε2 + o(ε2)− 2

]
=

1

2
x2H

[
2H(2H − 1)ε2 + o(ε2)

]
, x� 0 .

3For h < 0 the condition is understood to hold whenever it makes sense, i.e. when the shifted index
remains in the indexing set as e.g. in formula (3.11).
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Thus for x→∞ we have

1
2
x2H [2H(2H − 1)ε2 + o(ε2)]

x2H−2H(2H − 1)
= 1 +

1
2
x2Ho(ε2)

x2HH(2H − 1)ε2︸ ︷︷ ︸
→0

→ 1,

which proves the claim.

Corollary 3.7. (Long range dependence) Let (BH)t≥0 be an fBM. Then (BH,∆)t≥0 exhibits
long range dependence if and only if 1

2
< H < 1.

Proof.

- If H = 1
2
, then (BH

t )t≥0 is standard Brownian motion and ρ 1
2
,1 is eventually 0.

- If 0 < H < 1
2
, then 2H−2 < −1, then the tail of the function in (3.12) is summable.

- If 1
2
< H < 1, then 2H − 2 > −1, then the tail is not summable.

More can be said about the general dependence of increments.

Proposition 3.8. (Dependence of increments) Let BH = (BH
t )t≥0 be an fBM and 0 ≤

s1 < t1 < s2 < t2. Then

Cov
(
BH
t1
−BH

s1
, BH

t2
−BH

s2

){< 0, if 0 < H < 1
2

”mean reverting”

> 0, if 1
2
< H < 1 ”trending”

Proof. If 0 < H < 1
2
, then x 7→ x2H is strictly concave, and thus

0 =
1

2

[
(t2 − s1) + (s2 − t1)− (t2 − t1)− (s2 − s1)

]2H

>
1

2

[
(t2 − s1)2H + (s2 − t1)2H − (t2 − t1)2H − (s2 − s1)2H

]
.

The case of 1
2
< H < 1 follows similarly, replacing concavity with convexity.

At least for the increment process and in the asymptotic region this can also be seen from
(3.12). Compare the above result to figures 1 to 5 in section 7.

4 Properties of Sample Paths

4.1 Continuity

While the continuity of fBM was postulated in its definition, we can say more about
the regularity of its sample paths. The right tool to analyse the regularity of stochastic
processes tends to be local Hölder-continuity or (almost equivalently) local p-variation.
The central theorem in this direction is the Continuity Theorem of Kolmogorov–Centsov.
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Theorem 4.1 (Kolmogorov–Centsov). Let X = (Xt)0≤t≤T be a stochastic process. If
there exist constants α, β, C > 0 s.t.

E [|Xt −Xs|α] ≤ C|t− s|1+β, 0 ≤ s, t ≤ T,

then there exists a continuous modification of X which is locally γ-Hölder-continuous for
every γ ∈

(
0, β

α

)
. Since Hölder-continuity implies continuity, by Proposition 2.2, there

exists only one such modification (up to indistinguishability).

Proof. See [8, Thm. 2.2.8].

Theorem 4.2. Let BH = (BH
t )t≥0 be an fBM. Then there exists a continuous modification

of BH which is locally γ-Hölder for γ ∈ (0, H).

Proof. Let 0 ≤ s ≤ t be arbitrary. Then because BH is centred

E
[∣∣BH

t −BH
s

∣∣2] = Var
[
BH
t −BH

s

]
= |t− s|2H ,

and since BH is Gaussian we have

BH
s −BH

t ∼ BH
1

√
E
[
|BH

t −BH
s |

2
]
,

and thus for any n ∈ N

E
[∣∣BH

t −BH
s

∣∣n] =

(√
E
[
|BH

t −BH
s |

2
])n

E
[∣∣BH

1

∣∣n]
≤
(
|t− s|2H

)n
2 E
[∣∣BH

1

∣∣n]
= |t− s|HnE

[∣∣BH
1

∣∣n] .
Thus, by Theorem 4.1, for each n ∈ N there exists a continuous modification B̃H

(n)
of BH

which is locally γ-Hölder continuous with γ ∈ (0, Hn−1
n

). Since continuous modifications
are unique up to indistinguishability by Proposition 2.2, there exists a single continuous
modification which is locally γ-Hölder continuous for every γ ∈ (0, H).

Corollary 4.3. Let BH = (BH
t )t≥0 be an fBM. Then BH does not have locally γ-Hölder

sample paths for γ ≥ H on any set A ⊆ Ω with P(A) > 0.

Proof. If BH were locally γ-Hölder for some γ ≥ H on a set A of positive measure, then
in particular this would be true for H = γ. Thus on this set, the sample paths of BH had
finite 1

H
-variation: Since for any T > 0 and any finite partition P of [0, T ] we have

∑
ti∈P

∣∣∣BH
ti

(ω)−BH
ti−1

(ω)
∣∣∣ 1
H ≤

∑
ti∈P

∥∥BH(ω)
∥∥ 1

H

H;[0,T ]
|ti − ti−1| ≤

∥∥BH(ω)
∥∥ 1

H

H;[0,T ]
T, ∀ω ∈ A,

where ‖ · ‖H;[0,T ] denotes the H-Hölder norm on [0, T ]. Taking the supremum over all
finite partitions P gives the result. However, [14] shows that the 1

H
-variation of fBM is

infinite P-a.s. which poses a contradiction.
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Corollary 4.4. Let BH =
(
BH
t

)
t≥0

be an fBM. Then BH does not have differentiable

sample paths on any set A ⊆ Ω with P(A) > 0.

Proof. If BH were differentiable on a set A with P(A) > 0, then on that set the sample
paths would be of finite 1-variation. However, by Corollary 4.6 there exists a sequence
of finite partitions along which the 1-variation diverges in L2. Thus there exists a subse-
quence along which the 1-variation diverges P-a.s. Since the 1-variation is greater than
any 1-variation along a sequence of finite partitions, the 1-variation cannot be finite.

4.2 Variation

Theorem 4.5. ([11, Thm. 2.1]) Let f ∈ L2(R, γ1), and let BH = (BH
t )t≥0 be an fBM.

Then

1

n

n∑
k=1

f
(
BH
k −BH

k−1

)
→ E

[
f
(
BH

1

)]
, n→∞ in L2(Ω,P). (4.1)

Proof. ”H = 1
2
”: If H = 1

2
, then the increments

(
BH
k −BH

k−1

)
k∈N are independent and

N (0, 1)-distributed. Thus the sequence
(
f
(
BH
k −BH

k−1

))
k∈N is iid and square-integrable,

and thus by the law large numbers (4.1) follows.

”H 6= 1
2
”: Since f ∈ L2(R, γ1) we may expand f into the orthonormal basis given by the

Hermite polynomials as

f(x) =
∞∑
k=0

ck(f)√
k!
Hk(x), x ∈ R.

The orthogonality of the Hermite polynomials gives

EP
[
f(A)2

]
= Eγ1

[
f 2
]

=
∞∑
k=0

ck(f)2

and

E
[
f(BH

1 )
]

=
〈
f(BH

1 ), 1
〉
L2(Ω,P)

= 〈f, 1〉L2(R,γ1) = c0(f). (4.2)

Recall that we want to show that

E

([ 1

n

n∑
k=1

f
(
BH
k −BH

k−1

)]
− E[f(BH

1 )]

)2
→ 0, n→∞.

Firstly, by using (4.2), the fact that BH
1 is N (0, 1)-distributed, and the orthonormal basis

expansion into Hermite polynomials, we deduce



14 4 PROPERTIES OF SAMPLE PATHS

[
1

n

n∑
k=1

f
(
BH
k −BH

k−1

)]
− E

[
f
(
BH

1

)]
=

1

n

n∑
k=1

[
f
(
BH
k −BH

k−1

)
− E

[
f
(
BH

1

)] ]
=

1

n

∞∑
l=1

cl(f)√
l!

n∑
k=1

Hl

(
BH
k −BH

k−1

)
.

Thus, using again the orthogonality of the Hermite polynomials,

E

([ 1

n

n∑
k=1

f
(
BH
k −BH

k−1

)]
− E

[
f
(
BH

1

)])2
 =

= E

( 1

n

∞∑
l=1

cl(f)√
l!

n∑
k=1

Hl

(
BH
k −BH

k−1

))2


=
1

n2

∞∑
l,m=1

cl(f)cm(f)√
l!m!

E

[(
n∑
k=1

Hl

(
BH
k −BH

k−1

))( n∑
h=1

Hm

(
BH
h −BH

h−1

))]

=
1

n2

∞∑
l,m=1

cl(f)cm(f)√
l!m!

n∑
k,h=1

E
[
Hl

(
BH
k −BH

k−1

)
Hm

(
BH
h −BH

h−1

)]
By Lemma 2.5 and the fact that for any k ∈ N the random variable BH

k −BH
k−1 ∼ BH

1 is
N (0, 1)-distributed4 we obtain

1

n2

∞∑
l=1

cl(f)2

n∑
k,h=1

E
[(
BH
k −BH

k−1

) (
BH
h −BH

h−1

)]l
.

Since (BH
t −BH

t−1)t≥0 is stationary by Proposition 3.2 (4), this yields

1

n2

∞∑
l=1

cl(f)2

n∑
k,h=1

ρH,1(|k − h|)l,

where ρH,1 is the autocovariance function of the increment process of fBM with increment
length 1. Via the Cauchy–Schwarz inequality and stationarity of increments we have

|ρH,1(|k−h|)| = E
[(
BH
k −BH

k−1

) (
BH
h −BH

h−1

)]
≤
√

Var(BH
k −BH

k−1)
√

Var(BH
h −BH

h−1)︸ ︷︷ ︸
≤
√

1·
√

1

≤ 1

and thus

|ρH,1(|k − h|)|l ≤ |ρH,1(|k − h|)|, l ∈ N.

This finally leads to

4Here we use stationarity of increments.
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E

([ 1

n

n∑
k=1

f
(
BH
k −BH

k−1

)]
− E[f(BH

1 )]

)2
 ≤ 1

n2

∞∑
l=1

cl(f)2

︸ ︷︷ ︸
=Var[f(BH

1 )]

n∑
k,h=1

|ρ(|k − h|)|

≤ Var
[
f
(
BH

1

)] 1

n2

n∑
h=1

n−h∑
k=1−h

|ρ(|k|)|︸ ︷︷ ︸
≤2

∑n−1
k=0 |ρ(|k|)|

≤ 2 Var
[
f
(
BH

1

)] 1

n

n−1∑
k=0

|ρ(|k|)|.

Thus the problem is reduced to studying the asymptotic behaviour of 1
n

∑n−1
k=0 |ρ(|k|)|. By

Lemma 3.6 we have

|ρ(|k|)| ∼ H(2H − 1)k2H−2, k →∞ .

Thus if H < 1
2
, then

n∑
k=0

|ρ(|k|) ∼
n∑
k=0

H(2H − 1)k2H−2 ≤
∞∑
k=0

H(2H − 1)k2H−2 <∞

and hence 1
n

∑n−1
k=0 |ρ(|k|)| → 0 as n→∞.

If H > 1
2
, then

1

n

n−1∑
k=0

|ρ(|k|) ∼ H(2H − 1)
1

n

n−1∑
k=0

k2H−2 ∼ H
1

n
n2H−1 → 0, n→∞.

To see the last asymptotic equivalence, note that

n−1∑
k=0

k2H−2 ≤
∫ n

0

k2H−2dk =
1

2H − 1
n2H−1 .

This gives the computation of p-variation as a corollary:

Corollary 4.6. Let BH = (BH
t )t≥0 be an fBM and 1 ≤ p <∞. Then for any t ≥ 0

n∑
k=1

∣∣∣BH
k
n
·t −B

H
k−1
n
·t

∣∣∣p →


0 , 1
H
< p

tE[|BH
1 |p] , 1

H
= p

+∞ , 1
H
> p

in L2(Ω,P).

In other words, the p-variation along the sequence of finite partitions { k
n

: 0 ≤ k ≤ n}n∈N
is finite if and only if 1

H
≤ p and 0 if and only if 1

H
< p. Note that this does not mean

that

sup
P

∑
ti∈P

∣∣∣BH
ti
−BH

ti−1

∣∣∣p
is finite, where P ranges over all finite partitions of [0, t] - see [14].
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Proof of Cor. 4.6. Since fBM is self-similar,
((

t
n

)−H
BH

k
n
·t

)
k≥0

is also an fBM. So by The-

orem 4.5 and choosing f : x 7→ |x|p we get

1

n

n∑
k=1

∣∣∣∣∣
(
t

n

)−H
BH

k
n
·t −

(
t

n

)−H
BH

k−1
n
·t

∣∣∣∣∣
p

→ E
[∣∣BH

1

∣∣p] in L2(Ω,P).

Thus also

t−pHnpH−1

(
n∑
k=1

∣∣∣BH
k
n
·t −B

H
k−1
n
·t

∣∣∣p)→ E
[∣∣BH

1

∣∣p] in L2(Ω,P).

The conclusion now follows since

npH−1 →


0 , 1

H
> p

1 , 1
H

= p

+∞ , 1
H
< p

and thus

n∑
k=1

∣∣∣BH
k
n
·t −B

H
k−1
n
·t

∣∣∣p →


0 , 1
H
< p

tE[|BH
1 |p] , 1

H
= p

+∞ , 1
H
> p

.

5 Probabilistic Properties

We now turn to some of the probabilistic properties of fBM.

5.1 Law of Large Numbers

Recall that for standard Brownian motion

Bn

n
→ 0 P− a.s., n→∞,

The classical law of large numbers is not applicable to fBM since its increments are not
independent. However, as an immediate corollary of Theorem 4.5 we get a law of large
numbers for fractional Brownian motion as follows.

Corollary 5.1. (Law of Large Numbers) Let BH = (BH
t )t≥0 be an fBM. Then

BH
n

n
→ 0, in L2(Ω,P).

Proof. Set f : x 7→ x in Theorem 4.5.
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5.2 Law of Iterated Logarithm

Recall that for standard Brownian motion the law of the iterated logarithm gives precise
tail bounds:

lim sup
t→∞

Bt√
2t ln ln t

= 1 P− a.s.

See for example [8, Thm. 2.9.23]. A similar result holds for fractional Brownian motion:

Theorem 5.2. (Law of the Iterated Logarithm) Let BH = (BH
t )t≥0 be an fBM. Then

lim sup
t→∞

BH
t√

2t2H ln ln t
= 1 P− a.s.

Proof. See [13, Thm. 1.1 (C)] with Y = BH and hence Q(t) = 1
2
t2H . Then choosing

v(t) = t2H , s0 = 0, and β1 = β2 = β3 = 2H satisfies the conditions gives the result.

5.3 Semimartingale Property

Recall that a stochastic process (Xt) is called a (continuous) semi-martingale if

Xt = Mt + At, 0 ≤ t,

where (Mt) is a (continuous) local martingale and (At) is a cadlag adapted process which
is locally of bounded variation. These processes are of course very important as the set
of continuous local martingales is the largest class of integrators for which there exists an
Ito theory of integration. However, unfortunately, fBM does not lie in this class for any
H 6= 1

2
.

Theorem 5.3. Every continuous semi-martingale has finite 2-variation along a sequence
of partitions and strictly positive 2-variation along a sequence unless it has finite total
variation. The convergence is to be taken in probability.

Proof. Recall that the quadratic variation of a semi-martingale is equal to the quadratic
variation of the local martingale part. Then the result follows from [8, Thm 5.8].

Theorem 5.4. Let BH = (BH
t )t≥0 be an fBM. Then BH is a semi-martingale if and only

if H = 1
2
, in which case it is a martingale.

Proof. If H = 1
2
, BH is standard Brownian motion and is thus a continuous martingale.

Let H 6= 1
2

and assume BH was a martingale. Then Corollary 4.6 and Theorem 5.3 would
be in contradiction to one another.

5.4 Markov Property

Another aspect that sets fBM apart from standard Brownian motion is the following.

Theorem 5.5. ([11, Thm. 2.3]) Let BH = (BH
t )t≥0 be an fBM. Then BH is Markov if

and only if H = 1
2
.
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Proof. ”⇒”: Let H 6= 1
2

and assume BH were Markov. Then since the process is Gaussian,
for any 0 < s < t < u we have

Cov(BH
s , B

H
u ) Cov(BH

t , B
H
t ) = Cov(BH

s , B
H
t ) Cov(BH

t , B
H
u ), (5.1)

(see [1, p. 168, Thm. 8.4]). Choose u = 1 and define the function

κ(s) := Cov
(
BH
s , B

H
1

)
=

1

2

(
1 + s2H − (1− s)2H

)
> 0, 0 ≤ s ≤ 1. (5.2)

Note that for any 0 ≤ s < t ≤ 1 we have 0 ≤ s
t
≤ 1 and

Cov
(
BH
t , B

H
t

)
κ
(s
t

)
= t2H

1

2

[
1 +

(s
t

)2H

−
(

1−
(s
t

))2H
]

= Cov
(
BH
s , B

H
t

)
,

and thus via equation (5.1)

κ
(s
t

)
=
κ (s)

κ (t)
.

Define

ψ(s) = ln(κ(e−s)), 0 ≤ s,

and observe that

ψ(0) = 0, lim
s→∞

ψ(s) = −∞, and ψ(s+ t) = ψ(s) + ψ(t), s, t ≥ 0. (5.3)

Differentiating the latter w.r.t. s yields ψ′(s + t) = ψ′(t) for every s ≥ 0, implying that
ψ′ is constant and thus ψ is linear on [0,∞). Via the second observation in line (5.3) this
means that there exists an α > 0 s.t. ψ(s) = −αs, s ∈ R, or equivalently

κ(s) = sα, 0 < s ≤ 1. (5.4)

Differentiating the term in equation (5.2) twice gives

|κ′′(s)| =

∣∣∣∣∣∣H(2H − 1)

s2H−1︸ ︷︷ ︸
→1

− (1− s)2H−2︸ ︷︷ ︸
→∞

∣∣∣∣∣∣→∞, s→ 1,

since

H 6= 1

2
⇒ H(2H − 1) 6= 0 and H < 1⇒ 2H − 2 < 0.

But this is a contradiction to formula (5.4), since it implies

|κ′′(s)| → |κ(1)| = α|α− 1| <∞, s→ 1.

”⇐”: Assume H = 1
2
. Then BH is Brownian motion and thus Markov.
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6 Further Topics

6.1 Integral w.r.t. fractional Brownian Motion

In order to solve stochastic differential equations driven by fractional Brownian motion

dXt = b(t,Xt)dt+ σ(t,Xt)dB
H
t

one needs a notion of integral w.r.t. BH . If H = 1
2

such an integral is provided by Ito’s
theory of stochastic integration. However, as shown in section 5.3, whenever H 6= 1

2
,

BH is not a semi-martingale and the theory is not available. The right replacement de-
pends on whether we are in the rough case (0 < H < 1

2
) or in the regular case (1

2
< H < 1).

In the latter case, Young’s theory of integration is a natural choice (for sufficiently regular
integrands), while in the former case, more refined methods, like the theory of rough paths
is needed. Yet another alternative is to use the fact that fBM is a Gaussian process and
utilize the Malliavin calculus and the Skohorod integral.

We will consider none of the above here and instead refer to [6], [2], [12], [5].

6.2 Fractional Calculus

The expression in formula (3.5) is (essentially) a fractional integral. This is no coincidence.
There is a rich theory involving fBM and fractional calculus, relating fBMs of different
Hurst parameter to one another in a similar way to how formula (3.5) relates fBM to
standard Brownian motion - see [10]. Interestingly though, fBM does not get its name
from its definition via a fractional integral but from the ”fractional nature” of its spectral
density λ1−2H when H 6= 1

2
- see [9, p. 422].

6.3 Cameron-Martin space

The following is a reformulation of [4, Thm. 41, 44]. As a continuous Gaussian process,
fBM on [0, 1] has a Cameron-Martin space. It can be given as the image of L2([0, 1], λ)
under the map

h 7→
∫ 1

0

KH(t, s)h(s)ds, h ∈ L2([0, 1], λ),

where

KH(t, s) =
(t− s)H− 1

2

Γ
(
H + 1

2

) F (H − 1

2
,
1

2
−H,H +

1

2
, 1− t

s

)
,

F is the Gaussian hypergeometric function, and Γ is the usual gamma function. See also
[5].
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7 Simulation of fBM and Sample Paths

The following is (up to small modifications) taken from [15, Sec. 6]. Many other methods
of simulation can be found in [3]. The simulation was done in MATLAB. We will give it
here without further explanation.

H = 0.5 % Hurst parameter 0 < H < 1

q = 10 % dyadic level of partition

n = 3 % number of realizations

T = 1 % time horizon

N = 2^q+1 % total number of time sample points

time = (T/(N-1))*(0:N-1) % normalized to time interval [0,T]

lambda = Lambda(H,N)

fGnsamples = [zeros(n,1) FGN(lambda ,n)]

simulation_data = fBM_sim(T,N,H,fGnsamples)

plot(time ,simulation_data)

function res = Lambda(H,N)

M = 2*N - 2;

C = zeros(1,M);

G = 2*H;

fbc = @(n)((n+1).^G + abs(n -1).^G - 2*n.^G)/2;

C(1:N) = fbc (0:(N -1));

C(N+1:M) = fliplr(C(2:(N -1)));

res = real(fft(C)).^0.5;

end

function res = FGN(lambda ,NT)

if (~exist('NT','var'))

NT = 1;

end

M = size(lambda ,2);

a = bsxfun (@times ,ifft(randn(NT ,M) ,[],2),lambda );

res = real(fft(a,[] ,2));

res = res(: ,1:(M/2));

end

function res = fBM_sim(T,N,H,fGnsamples)

increments = (T/N)^H * fGnsamples;

res = cumsum(increments ,2);

end
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Figure 1: H = 0.1

Figure 2: H = 0.2

Figure 3: H = 0.3

Figure 4: H = 0.6

Figure 5: H = 0.9
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In Séminaire de Probabilités XLIII, pages 215–219, 2010.

[15] Georgiy Shevchenko. Fractional brownian motion in a nutshell. International Journal
of Modern Physics: Conference Series, 36, 2015.


	Motivation - Rough Volatility
	Recap on Stochastic Processes
	Notions of Equivalence
	Hermite Polynomials

	Definition, Existence, and Basic Properties
	Definition
	Existence
	Increment Process
	Autocovariance

	Properties of Sample Paths
	Continuity
	Variation

	Probabilistic Properties
	Law of Large Numbers
	Law of Iterated Logarithm
	Semimartingale Property
	Markov Property

	Further Topics
	Integral w.r.t. fractional Brownian Motion
	Fractional Calculus
	Cameron-Martin space

	Simulation of fBM and Sample Paths

