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1. Cochain Complexes and Cohomology

1.1. Cochain Complexes

Definition 1. A cochain complex is a sequence of vector spaces {Ck}k∈Z
together with a sequence of linear maps dk : Ck → Ck+1 s.t. dk+1 ◦ dk = 0 (i.e.
im dk ⊆ ker dk+1) for every k ∈ Z. The subscript for d will often be dropped
and we call d the differential or boundary operator of the cochain complex.

Example 1. For a smooth manifold M , the sequence of vector spaces given by
Ck = Ωk(M) and with dk : Ωk(M) → Ωk+1(M) being the exterior derivative,
is a cochain complex.

Definition 2. (i) A sequence of linear maps

A
f−→ B

g−→ C (1)

is said to be exact at B if im f = ker g.
(ii) A sequence of linear maps

A0 f0−→ A1 f1−→ A2 f2−→ . . .
fn−1−−−→ An (2)

is said to be exact if it is exact at every Ak for k ̸= 0, n.
(iii) A sequence of five linear maps of the form

0 → A
f−→ B

g−→ C → 0 (3)

is called a short exact sequence.

Remark. (i) For a short exact sequence, as above, f is injective and g is surjec-
tive.

(ii) The sequence 0
f−→ B

g−→ C is exact if and only if g is injective.

(iii) The sequence A
f−→ B

g−→ 0 is exact if and only if f is surjective.
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1.2. Cohomology of a Cochain Complex

Element in ... are generally called ... and in deRham cohomology called ...
Ck k-cochains k-form

ker dk k-cocycle closed k-form
im dk−1 k-coboundary exact k-form

Definition 3. Let C := ({Ck}k∈Z, {dk}k∈Z) be a cochain complex. Then the
quotient vector space

Hk(C) := ker dk︸ ︷︷ ︸
=:Zk(C)

/ im dk−1︸ ︷︷ ︸
=:Bk(C)

(4)

is called the k-th cohomology vector space of C. The equivalence class
[c] ∈ Hk(C) of a cocylce c ∈ ker dk is called its cohomology class.

Remark. The cohomology Hk of a cochain complex is a measure for the failure
of C to be exact at Ck.

Definition 4. Let A,B be two cochain complexes with differentials d, d′. A
cochain map is a sequence {φk}k∈Z of linear maps φk : Ak → Bk s.t. d′k ◦φk =
φk+1 ◦ dk for every k ∈ Z. As with the differential, we will drop the subscript
of φ when it is clear from the context.

Remark. A cochain map φ induces a well-defined linear map φ : Hk(A) →
Hk(B) between the cohomology vector spaces of A and B via φ[a] = [φ(a)]. To
see this, let [a] ∈ Hk(A) i.e. let a ∈ ker dk. Then

d′k(φk(a)) = φk+1(dk(a)) = φk+1(0) = 0 (5)

Hence φk : ker dk → ker d′k. To show that it is well-defined, let [a] = 0 in Hk(A).
Then a ∈ im dk−1 i.e. ∃b ∈ Ak−1 : dk−1(b) = a. Hence

φk(dk−1(b)) = d′k−1(φk−1(b)) ∈ im d′k−1, (6)

and thus [φ(a)] = 0 in Hk(B).

Example 2. Let F : N → M be a smooth map. Then F ∗ : Ωk(M) → Ωk(N)
commutes with the differential and therefore induces a map on cohomology.

1.3. Connecting Homomorphism

Definition 5. A sequence of cochain complexes

0 → A i−→ B j−→ C → 0 (7)

is called short exact if i and j are cochain maps and for every k ∈ Z the
sequence

0 → Ak i−→ Bk j−→ Ck → 0 (8)

is short exact.
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Given the data of a short exact sequence of cochain complexes, one can construct
the following linear map δ∗ : Hk(C) → Hk+1(A), called the connecting ho-
momorphism. Its purpose will become clear via the zig-zag-Lemma, Lemma
1.
Let k ∈ Z be arbitrary and consider the following diagram:

0 Ak−1 Bk−1 Ck−1 0

0 Ak Bk Ck 0

0 Ak+1 Bk+1 Ck+1 0

d d d

d d d

i j

i j

i j

Now consider the following steps:

• Let [c] be an arbitrary element in Hk(C). That is, let c ∈ Ck ∩ ker d

• Since the middle sequence in the above diagram is exact at Ck, the map
j is surjective and there exists a b ∈ Bk s.t. j(b) = c.

• Apply d to b to obtain db ∈ Bk+1.

• Since j is a chain map and c ∈ ker d we have j(db) = d(j(b)) = d(c) = 0.
Hence db ∈ ker j and thus, since the upper sequence is exact at Bk+1, the
element db lies in the image of i.

• Hence there exits an element a ∈ Ak+1 s.t. i(a) = db.

• In order to see that a ∈ Ak+1∩ker d, note that i(da) = d(i(a)) = d(db) = 0.
Since the upper sequence is exact at Ak+1, the map i is injective and thus
da = 0.

We define the connecting homomorphism δ∗ : Hk(C) → Hk+1(A) via δ∗[c] = [a].
The above is summarized in the following diagram

b c

a db

j

d

i

or as δ∗ = i−1 ◦ d ◦ j−1, where i−1 and j−1 is to be understood as choosing
one element in the pre-image. By tracing through the argument with another
c′ ∈ Ck∩ker d as well as c+c′, we note that this map is linear. In order to show
that it is well defined i.e. that [a] depends neither on the choice of representative
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c of [c], nor on the choice of pre-image b, under the map j, of that representative
c (note that the choice of pre-image of db was unique since i is injective), we
argue as follows:
Let c′ ∈ Ck ∩ ker d be another representative of [c]. Then we want show that
a− a′ is a coboundary i.e. that there is a z ∈ Ak s.t. a− a′ = dz.

• Since c− c′ represents [0] there is a x ∈ Ck−1 s.t. c− c′ = dx.

• Since the sequence is exact at Ck−1, the map j is surjective and thus there
exists a y ∈ Bk−1 s.t. j(y) = x.

• Note that the element u := (b− b′)− dy ∈ Bk lies in ker j since

j(dy − (b− b′)) = j(dy)− j(b− b′) = dx− (c− c′) = 0. (9)

• Thus, by exactness at Bk, there is a z ∈ Ak s.t. i(z) = u.

• Finally,

i(dz−(a−a′)) = d((b−b′)−dy))−i(a−a′)) = d(b−b′)−i(a−a′) = 0 (10)

since a− a′ was chosen to lie in the i-pre-image of d(b− b′).

• Thus, by the injectivity of i, we conclude that dz = a− a′.

To show well-definedness with respect to the choice of pre-image of c, let b′ be
another element in the pre-image of c ∈ Ck. Then j(b − b′) = c − c = 0 and
hence there exists a u ∈ Ak such that i(u) = b− b′. But now

i(du) = d(i(u)) = d(b− b′). (11)

Thus, since i is injective du = c− c′ and c− c′ is a coboundary and δ∗ does not
depend on the choice of pre-image of c.

Theorem 1. (Zig-Zag-Lemma) Let

0 → A i−→ B j−→ C → 0 (12)

be a short exact sequence of cochain complexes. Then the sequence

. . . Hk−1(B) Hk−1(C)

Hk(A) Hk(B) Hk(C)

Hk+1(A) Hk+1(B) . . .

i∗ j∗

δ∗

i∗ j∗

δ∗

i∗ j∗
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is long exact.

Proof. Let k ∈ Z be arbitrary.

• Exactness at Hk(A) i.e. im δ∗ = ker i∗

”⊆”: Let δ∗[c] ∈ Hk(A). Then as in the construction of δ∗ a represen-
tative of the class δ∗[c] is given by the pre-image under i of db. Thus
i∗δ∗[c] = [i(δ∗(c)])] = [db] = 0.

”⊇”: Let i∗[a] = 0. That is, let i(a) be a coboundary in Bk. Then there is
a b ∈ Bk−1 s.t. i(a) = db. Applying j to this b gives j(b) ∈ Ck−1. Tracing
back the steps in the opposite direction shows that applying δ∗ to [j(b)]
gives [a].

• Exactness at Hk(B) i.e. im i∗ = ker j∗

”⊆”: Let i∗[a] ∈ Hk(B). Then j∗(i∗[a]) = j∗[i(a)] = [j(i(a))] = [0], since
(12) is exact at Bk.

”⊇”: Let [b] ∈ ker j∗. Then j∗[b] = [j(b)] = 0. Hence j(b) = dc for some
c ∈ Ck−1. Since j is surjective, there is a b′ ∈ Bk−1 s.t. j(b′) = c and thus
j(b− db′) = j(b)− dj(b′) = 0. Hence there is a a ∈ Ak s.t. i(a) = b− db′.
Thus i∗[a] = [i(a)] = [b− db′] = [b], showing that [b] ∈ im i∗.

• Exactness at Hk(C) i.e. im j∗ = ker δ∗

”⊆”: Let [b] ∈ Hk(B). Then by definition δ∗j∗[b] = δ∗[j(b)]. Now we
trace the element [j(b)] through the machinery for δ∗:

We may pick b as the pre-image of j(b) in Bk. Since [b] ∈ Hk(B), the
element b is a cocycle and thus db = 0. Hence db = i(0) and thus by the
injectivity of i we conclude δ∗[j(b)] = [0].

”⊇”: Let δ∗[c] = [a] = 0 ∈ Hk(A). Then a = da′ with a′ ∈ Ak−1. On
the other hand we may trace back a along the path of δ∗ to an element
c ∈ Ck−1 as

a′ b c

a db

d

j

d

i

But now b− i(a′) is a coboundary since d(b− i(a′)) = db− i(da′) = 0 and
also j(b− i(a′)) = j(b)− j(i(a′)) = c− 0 = c by the exactness at Bk−1.
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1.4. Mayer-Vietoris Sequence

Let M be a manifold and let {U, V } be an open cover of M with the following
inclusion maps, forming a commutative diagram of manifolds.

U ∩ V

U

V

M

jU

jV

iU

iV

For every k ∈ Z, the above maps induce the sequence

0 → Ωk(M)
i−→ Ωk(U)⊕ Ωk(V )

j−→ Ωk(U ∩ V ) → 0 (13)

defined via

i : ω 7→ (i∗Uω, i
∗
V ω) = (ω|U , ω|V ), ω ∈ Ωk(M) (14)

j : (ω, σ) 7→ j∗Uω − j∗V σ = ω|U∩V − σ|U∩V , ω ∈ Ωk(U)⊕ Ωk(V ). (15)

We call i the restriction map and j the difference map. Together with the
respective boundary operator d, the three sequences of vector spaces (indexed
by k) form cochain complexes; in the case of Ωk(U)⊕Ωk(V ) this can be seen by
noting that Ωk(U)⊕Ωk(V ) ∼= Ωk(U

∐
V ), where

∐
denotes the disjoint union,

and thus d(ω, σ) = (dω, dσ).

Proposition 1. The maps i and j are cochain maps.

Proof. Let k ∈ Z be arbitrary. Let ω ∈ Ωk(M) be arbitrary. Then

d(i(ω)) = (d(i∗U (ω), d(i
∗
V (ω)) = (i∗U (dω), i

∗
V (dω)) = i(d(ω)). (16)

Let (ω, σ) ∈ Ωk(U)⊕ Ωk(V ) be arbitrary. Then

d(j(ω, σ)) = d(j∗Uω)− d(j∗V σ) = j∗U (dω)− j∗V (dσ) = j(d(ω, σ)). (17)

Proposition 2. For every k ∈ Z, the sequence

0 → Ωk(M)
i−→ Ωk(U)⊕ Ωk(V )

j−→ Ωk(U ∩ V ) → 0 (18)

is short exact.

Proof. Exactness at Ωk(M) and Ωk(U) ⊕ Ωk(V ) are clear. For the exactness
at Ωk(U ∩ V ) i.e. for the surjectivity of the difference map j, consider the
following1:

1It is generally not true that there exists a smooth extension of ω ∈ Ωk(U ∩ V ) to U or V .
So the naive idea of choosing such an extension η and defining j−1(ω) = (η, 0) does not work.
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Figure 1: Rewriting a function f on U ∩V as a difference of functions on U and
V . Fig. 26.1 [TuMf].

Let ω ∈ Ωk(U ∩ V ) be arbitrary and let {ρU , ρV } be a partition of unity subor-
dinate to the open cover {U, V }. Then define the forms

ηU :=

{
ρV ω, on U ∩ V
0, on U \ supp ρV

(19)

and

ηV :=

{
ρUω, on U ∩ V
0, on V \ supp ρU .

(20)

To see that ηU defines a smooth k-form, note that the intersection (U ∩ V ) ∩
(U \ supp ρV ) = (U ∩V )∩ (supp ρV )

c is an open set, on which 0 and ρV ω agree.
Hence they can be glues to a smooth form. The same is true for ηV .
Now we have

j(ηU ,−ηV ) = ηU |U∩V + ηV |U∩V = ρUω + ρV ω = ω, (21)

showing that j is surjective.

Thus, as a result the Zig-Zag-Lemma applies and we obtain a long exact se-
quence in cohomology, called the Mayer-Vietoris sequence:
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. . . Hk−1(U)⊕Hk−1(V ) Hk−1(U ∩ V )

Hk(M) Hk(U)⊕Hk(V ) Hk(U ∩ V )

Hk+1(M) Hk+1(U)⊕Hk+1(V ) . . .

i∗ j∗

δ∗

i∗ j∗

δ∗

i∗ j∗

Let us see explicitly what the connecting homomorphism does here:

(ζU ,−ζV ) ζ

α (dζU ,−dζV )

j

d

i

1. Let ζ be a closed k − 1-form in U ∩ V and let {ρU , ρV } be a partition of
unity subordinate to {U, V }. Extend ρUζ by 0 to a k − 1-form ζV to all
of V (same for U). Choose (−ζU , ζV ) in the pre-image of ζ under j.

2. Apply d to obtain (−dζU , dζV ). Since ζ is closed and j is a chain map
j(−dζU , dζV ) = dj(−ζU , ζV ) = dζ = 0. Hence the difference of −dζU and
dζV vanishes on U ∩V (even though of course ζU + ζV = ζ which does not
vanish in general.).

3. Hence −dζU and dζV can be glued to a global k-form, which is why
(−dζU , dζV ) has a pre-image α under i. The form α is both an exten-
sion of −dζU from U to M and of dζV from V to M .

4. Since (−dζU , dζV ) is exact and i is a chain map and injective, α is closed.

Often the dimension of the cohomology groups alone gives a lot of information
about the manifold. The following Lemma gives a restriction:

Lemma 1. Let

0
d−1−−→ A0 d0−→ A1 δ−→ . . .

dm−1−−−→ Am dm−−→ 0 (22)

be a long exact sequence with dimAk <∞ for every k ∈ Z. Then

m∑
k=0

(−1)k dimAk = 0. (23)

Proof. We use the rank-nullity theorem dimAk = dimker dk + dim im dk and
the exactness of the sequence im dk = ker dk+1 to compute
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m∑
k=0

(−1)k dimAk =

m∑
k=0

(−1)k(dimker dk + dim im dk)

=

m−1∑
k=0

(−1)k(dimker dk + dimker dk+1) + (−1)m dimAm

= dimker d0 + (−1)m−1 dimker dm + (−1)m dimAm = 0

Since d0 is injective, the first term is 0 and since (−1)m−1 dimker dm+(−1)m dimAm

the second two terms vanish.

Remark. The above Lemma 1 can be slightly weakened in that the assumption
of dimAk < ∞ can be dropped for every third term in the sequence. In that
case, one can conclude that those spaces are also finite dimensional. To see this,
note that via rank-nullity

dimAk = dimker dk + dim im dk (24)

= dim im dk−1 + dimker dk+1 (25)

≤ dimAk−1 + dimAk+1 <∞. (26)

In particular, in the setting of the Mayer-Vietoris sequence, this implies that if
U , V and U ∩ V have finite dimensional deRham cohomology, then so does M .

Proposition 3. In the situation as above, if U , V , and U ∩ V are connected,
then

(i) the sequence

0 → H0(M)
i−→ H0(U)⊕H0(V )

j−→ H0(U ∩ V ) → 0 (27)

is short exact and M is connected.

(ii) the long exact sequence

0 → H1(M)
i−→ H1(U)⊕H1(V )

j−→ H1(U ∩ V ) → . . . (28)

is also exact.

Proof. (i) By the exactness of the Mayer-Vietoris sequence, we only need to
show that j∗ is surjective. To see this, recall thatH0(U)⊕H0(V ) andH0(U∩V )
consists of pairs of functions, each constant on U , V , and U ∩ V , respectively,
and j assigns to any pair the difference of the restrictions to U ∩ V . Thus, any
constant function on U ∩ V with value a ∈ R is the image of (a, 0) under the
map j∗.
From Lemma 1 and the exactness of (27) we get dimH0(M)− 2 + 1 = 0, thus
dimH0(M) = 1 and hence that M is connected. A point-set-topological proof
is of course also possible.

(ii) By (i), the map δ∗ : H0(U ∩ V ) → H1(M) is the zero map. Hence
H0(U ∩ V ) may be replaced by the zero map.
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Figure 2: Covering of S1. Fig. 26.2 [TuMf].

2. Computations

2.1. Cohomology of S1

Using homotopy invariance of de Rham cohomology we note that U
∐
V ≃

R
∐
R and U ∩V ≃ R

∐
R. Hence the second and third column are determined.

For H0(S1) = 0, recall that the dimension of H0(M) equals the number of con-
nected components of M , which in this case is 1.

Thus we are left with the following table of cohomology groups:

S1 U
∐
V U ∩ V

H1 H1(S1) 0 0
H0 R R⊕R R⊕R

By Mayer-Vietoris we have the following exact sequence:

0 → R i∗−→ R⊕R j∗−→ R⊕R δ∗−→ H1(S1) → 0 (29)

Using Lemma 1, we obtain from (29)

1− 2 + 2− dimH1(S1) = 0 (30)

and thus dimH1(S1) ∼= R.

In order to identify a generator of H1(S1), recall from the last talk that for a
closed, orientable manifold, the volume form gives a closed, but not exact form
of degree dim(M). Hence in this case, H1(S1) is generated by θ.
Another way of identifying a generator of H1(S1) is to compute it explicitly:
since (29) is exact at H1(S1) we have H1(S1) = im δ∗.
Consider the cohomology class [f ] ∈ H0(U ∩ V ), which is represented by the
smooth function f ∈ C∞(S1) which is 1 on the connected component containing
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Figure 3: Connecting homomorphism δ∗ : H0(U ∩ V ) → H1(S1). Fig. 26.3
[TuMf].

the north pole and 0 on the connected component containing the south pole.
Then apply δ∗ : i−1 ◦ d ◦ j−1.

Firstly, j−1(f) = (−fU , fV ) gives a function on U and V , respectively, which
is an extension of −ρV f from U ∩ V to U and ρUf from U ∩ V to V , respec-
tively. Applying d gives two bump functions, each supported on the connected
component containing the north pole, and coinciding on all of U ∩V . Applying
i−1 gives a smooth one form on S1, whose restriction to U and V is −dfU and
dfV on U and V respectively, and is thus only has support in the connected
component of U ∩ V containing the north pole.

2.2. Cohomology of Sn, n ≥ 2

Theorem 2. Let n ≥ 1. Then

Hk(Sn) =

{
R k = 0, n

0 else.
(31)

Proof. n = 1: see subsection 2.1
n ⇒ n + 1: Assume the claim holds for Sn. There exists an open covering
of Sn+1 by two discs Dn of dimension n (these are the two standard charts
obtained by stereographic projection from the north and from the south pole).
The intersection of the two is homeomorphic to Sn. Thus, the Mayer-Vietoris
sequence, the induction hypothesis, and the fact that the dimension of H0(Sn)
equals the number of connected components, give that the following is an exact
sequence.

11



Figure 4: Covering of the torus. Fig. 28.1. [TuMf].

Sn+1 Dn+1
∐
Dn+1 Sn

Hn+1 Hn+1(Sn+1) 0 0
Hn Hn(Sn+1) 0 R
Hn−1 Hn−1(Sn+1) 0 0

...
...

...
...

H1 H1(Sn+1) 0 0
H0 R R⊕R R

In particular, this gives that

0 → R→ Hn+1(Sn+1) → 0 (32)

and

0 → 0 → Hk(Sn+1) → 0, 2 ≤ k ≤ n− 1 (33)

are exact and hence Hn+1(Sn+1) ∼= R and Hk(Sn+1) = 0. Furthermore, Lemma
1 shows that H1(Sn+1) = 0.

2.3. Cohomology Vector Space of the Torus

Choose a covering of the torus as follows:
Then A and B have the homotopy type of S1 and thus their cohomology is
isomorphic. This gives

S1 U
∐
V U ∩ V

H2 H2(M) 0 0
H1 H1(S1) R⊕R R⊕R
H0 R R⊕R R⊕R

Now, Lemma 1 gives

1−2+2−dimH1(M)+2−2+dimH2(M) = 0 ⇒ dimH1(M) = dimH2(M)+1,
(34)

and furthermore the exactness of the sequence gives
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H2(M) = im δ∗1
∼= (R⊕R)/ ker δ∗1 ∼= (R⊕R)/ im j∗. (35)

Thus the computation boils down to understanding the image of j∗. Recall that
j∗ is defined by

j∗(ω, η) = (j∗Uω)|U∩V − (j∗V η)|U∩V (36)

where j∗Uω and j∗V η are restrictions of ω and η from U , resp. V , to U ∩ V . In
our case, observe that

j∗(θA, θB) = (θA − θB , θA − θB), (37)

which gives im j∗ ∼= R. Thus H2(M) ∼= R and hence H1(M) ∼= R⊕R.

2.4. Cohomology Ring of the Torus

In order to obtain more refined statements about the cohomology of the torus,
we use the fact that one can obtain T 2 as a quotient of R2 (on which one knows
the cohomology well). In particular, with Λ := Z2, we have

T 2 = R2 /Λ. (38)

Note that since π : R2 ↠ T 2 is the quotient of a smooth manifold by the smooth,
proper, and free action of a discrete Lie Group Λ, the map π is a normal cover-
ing and in particular is a local diffeomorphism.

For a λ ∈ Λ define the translation function lλ : R2 → R2 via lλ(q) = q + λ.
Then we have to following Proposition.

Proposition 4. The pullback π∗ : Ω(T 2) → Ω(R2), induced by the projection
π : R2 ↠ T 2, is injective and

π∗(Ω∗(T 2)) = {ω ∈ Ω∗(R2) : l∗λ(ω) = ω,∀λ ∈ Λ}. (39)

Proof. More generally, let π :M → N be a surjective submersion i.e. a smooth
function s.t. π∗ : TpM → Tπ(p)N is a surjection for every p ∈M . Let ω ∈ Ωk(N)

s.t. π∗(ω) = 0 ∈ Ωk(M), let w1, . . . , wk ∈ TqN be arbitrary, choose a point
p ∈ π−1q ⊆M and define vi := π−1

∗ (wi). Then we have

ω(w1, . . . , wk) = ω(π∗(v1), . . . , π∗(vk)) = π∗(ω)(v1, . . . , vk) = 0, (40)

i.e. ω = 0.

For the ”⊆” -inclusion of the characterization of the image of π∗, note that for
any λ ∈ Λ and any q ∈ R2 we have

(π ◦ lλ)(q) = π(q + λ) = π(q), (41)

i.e. π ◦ lλ = π and thus by functoriality π∗ = l∗λ ◦ π∗, showing that for any
ω ∈ Ω(T 2)

π∗ω = l∗λ ◦ π∗ω. (42)
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For the ”⊇”-inclusion, assume that ω̄ ∈ Ωk(R2) is invariant under l∗λ for any
λ ∈ Λ. For any p ∈ T 2 and v1, . . . , vk ∈ TpT

2, define

ωp(v1, . . . , vk) := ω̄p̄(v̄1, . . . , v̄k) (43)

for a choice of p̄ ∈ π−1(p) and v̄1, . . . , v̄k ∈ Tp̄R2 s.t. π∗v̄i = vi. Note that if
p̄ is chosen, there is a unique choice for v̄1, . . . , v̄k since π∗ is an isomorphism
on each tangent space. Hence, in order to show well definedness of ω, we only
need to show independence of the choice of p̄. To do this, let p̃ = p̄+ λ, λ ∈ Λ
be another point in π−1(p). By the invariance under l∗λ we have

ω̄p̄ = (l∗λω̄)p̄ = l∗λ(ω̄p̄+λ). (44)

and thus

ω̄p̄(v̄1, . . . , v̄k) = l∗λ(ω̄p̄+λ)(v̄1, . . . , v̄k) (45)

= ω̄p̄+λ(lλ∗v̄1, . . . , lλ∗v̄k). (46)

Since π◦lλ = π we have π∗◦lλ∗ = π∗ and hence (46) shows that ωp is independent
of the choice of p̄. Finally, by definition of ω we have

ω̄p̄(v̄1, . . . , v̄k) = ωπ(p̄)(π∗v̄1, . . . , π∗v̄k) = (π∗ω)p̄(v̄1, . . . , v̄k). (47)

Hence, ω̄ = π∗ω.

We will now explicitly describe the ring structure on H∗(T 2).

Let x, y be the standard coordinate maps on R2. Then for any λ ∈ Λ we have

l∗λ(dx) = d(l∗λx) = d(x+ λ) = dx (48)

and thus by Proposition 4, both dx and dy arise as pullbacks of forms α and β
on T 2. Furthermore we have

π∗(dα) = d(π∗α) = d(dx) = 0. (49)

Since π∗ was injective, α is closed and thus defines a class in H1(T 2).

Proposition 5. The forms 1, α, β, α ∧ β represent a basis of H∗(T 2).

Proof. Let I2 := [0, 1]2, let i : I2 ↪→ R2 be the canonical inclusion and define
F := π ◦ i : I2 → T 2. Then F ∗α = i∗(π∗α) = i∗dx is the restriction of dx to
unit square.

We compute:

∫
M

α∧β =

∫
F (I2)

α∧β =

∫
I2

F ∗(α∧β) =
∫
I2

dx∧dy =

∫ 1

0

∫ 1

0

dxdy = 1. (50)

Thus, the form α ∧ β represents a non-zero cohomology class, since otherwise
by Stokes, the above integral were 0. Since dimH2(T 2) = 1 we conclude that
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Figure 5: Parametrization and curves on the torus. Fig. 28.2. [TuMf].

[α ∧ β] forms a basis of H2(T 2).

In order to see that α, β form a basis of H1(T 2), consider the two maps i1, i2 :
I → R given by i1(t) = (t, 0) and i2(t) = (0, t). The two curves induce two
closed curves C1, C2 in T 2 via Ck = π ◦ ik. Furthermore

C∗
1α = i∗1π

∗α = i∗1dx = di∗1x = dt

C∗
1β = i∗1π

∗β = i∗1dy = di∗1y = 0

and thus

∫
C1

α =

∫
C1(I)

α =

∫
I

C∗
1α =

∫ 1

0

dt = 1∫
C1

β =

∫
C1(I)

β =

∫
I

C∗
1β =

∫ 1

0

0 = 0

A similar argument is true for C2 giving
∫
C2
β ̸= 0. Thus, neither α nor β is

exact on T 2, and hence both define non-trivial cohomology classes [α] and [β].
The two classes are linearly independent as otherwise

∫
C2
α ̸= 0 ⇒

∫
C2
β = 0

which is not true.

Since T 2 is connected, H0(T 2) is one-dimensional and thus generated by the
cohomology class induced by the constant function.

In conclusion, the algebra H∗(T 2) is isomorphic to∧
(a, b) = T (Rx⊕ R y)/(x2, y2, xy + yx), deg(x) = deg(y) = 1 (51)

where T (V ) is the tensor algebra on the vector space V and Rx⊕R y is the two
dimensional, real vector space generated by x and y. This algebra is called the
exterior algebra of degree 1.
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Figure 6: Punctured compact oriented surface M . Fig. 28.3. [TuMf].

2.5. Cohomology of Genus g-Surfaces

Lemma 2. LetM be a compact, oriented surface, let p ∈M and let i : S1 →M\
{p} be the inclusion of a small circle around the puncture. Then the restriction
map

i∗ : H1(M \ {p}) → H1(S1) (52)

is the zero map.

Proof. Let ω ∈ Ω1(M \ {p}) be closed and let D ⊆ M be an open disc in M
bounded by C = i(S1). Then∫

S1
i∗ω =

∫
∂(M\D)

ω =

∫
M\D

dω︸︷︷︸
=0

= 0 (53)

Since H1(S1) ∼= R, with the isomorphism given by integration, this shows that
i∗[ω] = 0

Proposition 6. Let T 2 be a torus and let p ∈ T 2. Then A := T 2 \ {p} has the
following cohomology:

Hk(A) =


R , k = 0

R2 , k = 1

0 , k ≥ 2.

(54)

Proof. Cover T 2 by A and an open disk U around p. Since A, U , and U ∩ V
are connected, by Proposition 3, we may start the Mayer-Vietoris sequence with
H1(T 2). Using A ∩ U ≃ S1 and U ≃ {∗}, we obtain

T 2 A
∐
U A ∩ U

H2 R H2(A)⊕ 0 0
H1 R⊕R H1(A)⊕ 0 R

Since H1(U) = 0, the difference map j∗ on the level of H1 is simply the restric-
tion map and by Lemma 2 this restriction is 0. Hence, on the level of H1, the
morphism i∗ is an isomorphism i.e.

H1(A) ∼= R⊕R, (55)

and furthermore the following sequence is exact:
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Figure 7: Covering of Σ2. Fig. 28.4. [TuMf].

0 → R→ R→ H2(A) → 0 (56)

and thus by dimension counting (i.e. Lemma 1) we conclude H2(A) = 0.

Proposition 7. (cohomology of genus g surface) Let g ≥ 0 and let Σg denote
a compact, orientable surface of genus g. Then

Hk(Σg) =


R , k = 0

R2g , k = 1

R , k = 2

0 , k ≥ 3.

(57)

Proof. The proof will proceed via induction. The base case Σ0 = S2 is covered
by subsection 2.1.

For the induction on g, assume H∗(Σg) according to equation (57). Similarly
to Proposition 6, let us first compute the cohomology of the punctured genus
g surface Ag := Σg \ {p}. As for the torus,cover Σg by Ag and a small disc
U around the puncture. Then since the Ag, U and Ag ∩ U are connected, by
Proposition 3, we may start the Mayer-Vietoris sequence with H1(Σg). As with
the torus, using that U ≃ {∗} and Ag ∩ U ≃ S1, we get

Σg Ag

∐
U Ag ∩ U

H2 R H2(A)⊕ 0 0

H1 R2g H1(A)⊕ 0 R
.

Again, j∗ is simply the restriction, which, by Lemma 2, is the 0-map. Hence we
have

R2g ∼= H1(A) (58)

and by dimension counting H2(A) = 0.

Now, for the computation of H∗(Σg+1), cover Σg+1 with Ag and the punctured
torus A1, with Ag∩A1 is homeomorphic to a cylinder (which is in turn homotopy
equivalent to S1). Since Σg+1 is connected, H0(Σg+1) = 0. On the one hand,
since the map H2(Σg+1) → 0 has as its kernel all of H2(Σg+1), the map R →
H2(Σg+1) must be surjective. Hence dim(H2(Σg+1)) ≤ 1. On the other hand,
Σg+1 is an oriented closed manifold, and thus admits a volume form, which, by
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Stokes, is not exact. Hence dim(H2(Σg+1) ≥ 1 and thus dim(H2(Σg+1)) = 1.
Finally, dimension counting via Proposition 1 gives dim(H1(Σg+1)) = 2(g +
1).

3. Some classical applications

We want to show

Theorem 3. (Jordan-Brouwer separation) Let n ≥ 2 and Σ ⊆ Rn be homeo-
morphic to Sn−1. Then

1. R2 \Σ has exactly 2 connected components, U1 and U2, one of which being
bounded and one of which being unbounded,

2. Σ is the boundary of both U1 and U2.

We say that U1 is the domain inside Σ and U2 is the domain outside Σ.

Before proving this, we need a couple of Lemmas though. Firstly, recall the
Tietze extension theorem:

Theorem 4. (Tietze Extension) Let A ⊆ Rn be closed and let f : A → Rm be
continuous, then there exists a continuous function f̃ : Rn → Rm s.t. f̃ |A = f .

Remark. The theorem is usually stated more generally with Rn replaced by an
arbitrary normal topological space X and is actually equivalent to the normality
of X.

Lemma 3. Let A ⊆ Rn and B ⊆ Rm be closed sets and let ϕ : A → B be a
homeomorphism. Then there is a homeomorphism h : Rn+m → Rn+m s.t. for
every x ∈ A

h(x, 0m) = (0n, ϕ(x)). (59)

where 0k is the 0 in the first k components.

Proof. By the Tietz extension theorem 4 one can extend ϕ to a continuous
function ϕ̃ : Rn → Rm. Define firstly a homeomorphism h1 : Rn ×Rm →
Rn ×Rm by

h1(x, y) = (x, y + ϕ̃(x)). (60)

Analogously, one can extend ψ := ϕ−1 to a continuous function ψ̃ : Rm → Rn

and define h2 : Rn ×Rm → Rn ×Rm via

h2(x, y) = (x+ ψ̃(y), y). (61)

Define h := h−1
2 ◦ h1. Then for every x ∈ A we have

h(x, 0m) = h−1
2 (h1(x, 0m)) = h−1

2 (x, ϕ̃(x)) (62)

= (x− ψ̃(ϕ̃(x), ϕ̃(x)) = (x− ψ(ϕ(x)), ϕ(x)) (63)

= (x− x, ϕ(x)) = (0, ϕ(x)). (64)
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Corollary 1. Any homeomorphism ϕ : A → B between closed sets A,B ⊆ Rn

can be extended to a homeomorphism ϕ̃ : R2n → R2n.

Proof. Compose the homeomorphism h from Lemma 3 with the homeomor-
phism which exchanges the first n components with the second n.

Remark. Note that by restricting ϕ̃ to R2n \A we obtain a homeomorhism
R2n \A → R2n \B. But note that this does not imply, and it is generally
false, that Rn \A → Rn \B are homeomorphic. In fact, this would contradict
the existence of the Alexander horned sphere Σ in R3: even though Σ is home-
omorphic to S2, its complement, R3 \Σ, is not homeomorphic to R3 \S2, as the
former is not simply connected. However, the abelianization of π1(R3 \Σ) is 0,
which is why the following theorem does not pose a contradiction.

Proposition 8. Let A ⊊ Rn be closed. Then we have

Hp+1(Rn+1 \A) ∼= Hp(Rn \A), p ≥ 1,

H1(Rn+1 \A) ∼= H0(Rn \A)/R ·1
H0(Rn+1 \A) ∼= R ·1.

Proof. Identify Rn+1 = Rn ×R and define the following two sets

U1 := Rn ×(0,∞) ∪ (Rn \A)× (−1,∞)

U2 := Rn ×(−∞, 0) ∪ (Rn \A)× (−∞, 1)

Then we have U1 ∪ U2 = Rn+1 \A and U1 ∩ U2 = (Rn \A)× (−1, 1). Define by
ϕ(x1, . . . , xn+1) = (x1, . . . , xn, xn+1+1). Then for every x ∈ U1, the set U1 con-
tains a line segment from x to ϕ(x) and from ϕ(x) to a point p ∈ Rn ×(0,∞).
Maybe draw a picture with n = 1 to convince yourself of that. Hence U1 is
contractible (to the point p). Analogously, U2 is contractible.

Note that Rn \A deformation retracts to U1∩U2 and hence their cohomology is
isomorphic. By the Mayer-Vietoris sequence we obtain an isomorphism via the
connecting homomorphism

δ∗ : Hp(U1 ∩ U2) → Hp+1(Rn+1 \A) (65)

for p ≥ 1. For the second isomorphism consider the following exact sequence,
obtained via Mayer-Vietoris:

0 H0(Rn+1 \A) H0(U1)⊕H0(U2) H0(U1 ∩ U2)

H1(Rn+1 \A) 0

i∗ j∗

δ∗
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Elements in H0(U1)⊕H0(U2) are given by pairs of constant functions on U1 and
U2 with values a1 and a2. The image of (a1, a2) is thus the constant function on
U1∩U2 with value a1−a2. Thus by the exactness ofhe Mayer-Vietoris sequence

ker δ∗ = im j∗ = R · 1, (66)

where 1 is the constant function on U1 ∩ U2 with value 1. Thus we obtain

H1(Rn+1 \A) ∼= H0(U1 ∩ U2)/ ker δ
∗ ∼= H0(Rn \A)/R ·1. (67)

We also have by the above Mayer-Vietoris sequence and its exactness

dimH0(Rn+1 \A) = dim(im i∗) = dim(ker j∗) = 1 (68)

and thus H0(Rn+1 \A) ∼= R.

Theorem 5. Let A,B ⊊ Rn be closed subsets s.t. A and B are homeomorphic.
Then

Hp(Rn \A) ∼= Hp(Rn \B), p ≥ 0. (69)

Proof. Applying Proposition 8 m ≥ 1 times yields

Hp+m(Rn+m \A) ∼= Hp(Rn \A) (70)

Hm(Rn+m \A) ∼= H0(Rn \A)/R ·1. (71)

The same is true for B. By corollary 1 we know that R2n \A and R2n \B are
homeomorphic and thus have the same de Rham cohomology. Thus

Hp(Rn \A) ∼= Hp+n(R2n \A) ∼= Hp+n(R2n \B) ∼= Hp(Rn \B), p ≥ 1. (72)

and

H0(Rn \A)/R ·1 ∼= Hn(R2n \A) ∼= Hn(R2n \B) ∼= H0(Rn \B)/R ·1. (73)

Corollary 2. Let A,B be two closed homeomorphic subsets of Rn. Then Rn \A
and Rn \B have the same number of connected components.

Proof. If A = B = Rn this is clear. If A ̸= Rn and B ̸= Rn, this follows from
theorem 5. If A = Rn but B ̸= Rn, then considering A and B as closed subsets
of Rn+1 and applying theorem 5 again yields

2 = dimH0(Rn+1 \A) = dimH0(Rn+1 \B) = 1 (74)

a contradiction. Hence A and B cannot be homeomorphic to begin with.

Now let us turn to the proof of the Jordan-Brouwer separation theorem 3:
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Proof. (i) Since Sn−1 is compact, so is Σ and thus Σ is closed in Rn. Since Sn−1

separates Rn into the two connected components

int(Dn) = {x ∈ Rn : ∥x∥ < 1} and W := {x ∈ Rn : ∥x∥ > 1} (75)

by corollary 2, Rn \Σ also has two connected components. Furthermore, with
r := maxx∈Σ ∥x∥, the connected set r ·W is contained in one of the two con-
nected components U2 of Rn \Σ, which is thus unbounded. Hence for the other
component, U1, we have

U1 ⊆ Rn \U2 = {x ∈ Rn : ∥x∥ ≤ r}. (76)

Thus U1 is bounded.
(ii) Let p ∈ Σ and let V ⊆ Rn be an arbitrary open neighborhood of p. Then the
set A := Σ \ (Σ∩ V ) is closed in Σ and homeomorphically mapped to a proper,
closed subset B of Sn−1. Since Sn−1 is closed in Rn, the set B = Sn−1 ∩ B is
closed in Rn. Furthermore, since B is a proper subset of Sn−1 we see that Rn \B
is connected, and thus by corollary 2 so is Rn \A. Since Rn \A is an open subset
of Rn and connected, it is path-connected. Hence for any p1 ∈ U1 and p2 ∈ U2

one can find a continuous curve γ : [0, 1] → Rn \A s.t. γ(0) = p1 and γ(1) = p2.
By (i), the curve γ (now considered as a curve into Rn) has to intersect Σ,
since otherwise U1 and U2 would lie in a common path component. The set
γ−1(Σ) ⊆ [0, 1] is closed, hence compact, and hence contains c1 = min γ−1(Σ)
and c2 = max γ−1(Σ), both of which lie in (0, 1) since p1, p2 ̸∈ Σ. Hence

γ(c1) ∈ Σ ∩ V and γ(c2) ∈ Σ ∩ V (77)

but also

γ([0, c1)) ⊆ U1 and γ((c2, 1]) ⊆ U2. (78)

Hence there exist t1 ∈ [0, c1) and t2 ∈ (c2, 1] s.t.

γ(t1) ⊆ U1 ∩ V and γ(t2) ⊆ U2 ∩ V. (79)

showing that p is indeed a boundary point of U1 and also of U2. In order to see
that all boundary points of U1 have to be contained in Σ, note that since Rn \Σ
is an open subset of Rn, all of its connected components are open. Hence for
any p ∈ U2 there is a neighborhood V of p, which is disjoint from U1. The same
argument holds for U2.

Theorem 6. Let A ⊆ Rn be homeomorphic to the closed k-disk Dk with k ≤ n.
Then Rn \A is connected.

Proof. Since A is homeomorphic to Dk, it is compact and thus closed in Rk ⊂
Rn. Hence by corollary 2 the number of connected components of Rn \A coin-
cides with that of Rn \Dk, which is 1.

Theorem 7. (Brouwer) Let U ⊆ Rn be open and let f : U → Rn be continuous
and injective. Then f(U) ⊆ Rn is open and f : U → f(U) is a homeomorphism.
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Proof. Since U is open in Rn, it is a union of open balls B(r, x) around points
x ∈ U . Hence, since images preserve unions, it is sufficient to show that the
images f(B(r, x)) are open. Let r > 0 and x ∈ U be arbitrary s.t. B(r, x) ⊆ U
and write D := B(r, x), S := ∂D and Ḋ := int(D) = B(r, x). Then since S is
compact and Rn is Hausdorff, Σ := f(S) is homeomorphic to S, which is home-
omorphic to Sn−1. Thus by theorem 3, the subspace Rn \Σ has two connected
components, U1 (which is bounded) and U2 (which is unbounded); since Rn \Σ
is open, so are U1 and U2. By theorem 6, the subspace Rn \f(D) is connected,
and since it is disjoint from Σ, it must be contained in either U1 or U2. Since
f(D) is compact, the subspace Rn \f(D) is unbounded and thus must be con-
tained in U2. Hence Σ ∪ U1 = Rn \U1 ⊆ f(D). Hence U1 ⊆ f(Ḋ). Since Ḋ is
connected and thus f(Ḋ) is also connected, and furthermore f(Ḋ) ⊆ U1 ∪ U2

we conclude that f(Ḋ) ⊆ U1 since otherwise U1 ⊆ U2. Thus U1 = f(Ḋ), which
is open.

Let W ⊆ U be an open subset. Then by restricting f to W and applying the
same argument as above we see that f(W ) is also open. Hence f is a continuous,
open bijection i.e. a homeomorphism.

Corollary 3. (Invariance of Domain) Let A ⊆ Rn have the subspace topology
induced by Rn and be homeomorphic to an open subset U of Rn. Then A is
open in Rn.

Proof. Follows by applying Theorem 7 to U .

Corollary 4. (Invariance of Dimension) Let U ⊆ Rn and V ⊆ Rm be non-
empty open subsets. If U and V are homeomorphic, then n = m.

Proof. Assume that m < n and consider V as a (not necessarily open) subset of
Rn via V ⊆ Rm ⊆ Rn and topology induced by Rn (or equivalently Rm). Since
V is homeomorphic to U by assumption, corollary 3 implies that V is open an
open subset of Rn. This is a contradiction since V is contained in a proper
linear subspace of Rn.
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