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1. Cochain Complexes and Cohomology

1.1. Cochain Complexes

Definition 1. A cochain complex is a sequence of vector spaces {C*}icz
together with a sequence of linear maps dy : C* — C*+1 s.t. dyy10dy =0 (ie.
imdy C kerdgyq) for every k € Z. The subscript for d will often be dropped
and we call d the differential or boundary operator of the cochain complex.

Example 1. For a smooth manifold M, the sequence of vector spaces given by
Ck = QF(M) and with dj, : QF(M) — QF*1(M) being the exterior derivative,
is a cochain complex.

Definition 2. (i) A sequence of linear maps

AL B%e (1)

is said to be exact at B if im f = kerg.
(ii) A sequence of linear maps

J/CRECNE R ENL I N L N 2)

is said to be exact if it is exact at every A* for k # 0, n.
(iii) A sequence of five linear maps of the form

05A4LB% 050 (3)

is called a short exact sequence.

Remark. (i) For a short exact sequence, as above, f is injective and g is surjec-
tive.

(ii) The sequence 0 1. B % ¢ is exact if and only if g is injective.

(iii) The sequence A 1y B 20 is exact if and only if f is surjective.



1.2. Cohomology of a Cochain Complex

Element in ... | are generally called ... | and in deRham cohomology called ...
CF k-cochains k-form
ker dj, k-cocycle closed k-form
imdg_1 k-coboundary exact k-form

Definition 3. Let C := ({C*}rez, {dx}rez) be a cochain complex. Then the
quotient vector space
H*(C) := kerdy, /imdy_, (4)
S~ N——
=ZK(C) =:Bk(C)

is called the k-th cohomology vector space of C. The equivalence class
[c] € H*(C) of a cocylce ¢ € ker dy, is called its cohomology class.

Remark. The cohomology H* of a cochain complex is a measure for the failure
of C to be exact at C*.

Definition 4. Let A, B be two cochain complexes with differentials d,d’. A
cochain map is a sequence {(y, }rez of linear maps ¢y, : A¥ — B¥ s.t. dj oy, =
@p+1 o di for every k € Z. As with the differential, we will drop the subscript
of ¢ when it is clear from the context.

Remark. A cochain map ¢ induces a well-defined linear map ¢ : H*(A) —
H*(B) between the cohomology vector spaces of A and B via ¢[a] = [p(a)]. To
see this, let [a] € H¥(A) i.e. let a € kerdy. Then

dy.(er(a)) = rt1(di(a)) = pr41(0) = 0 ()

Hence ¢y, : ker d, — ker dj,. To show that it is well-defined, let [a] = 0 in H*(A).
Then a € imdy,_; i.e. b€ A*~1:d;_1(b) = a. Hence

or(dr-1(0) = dj_1(pr-1(b)) € imdy,_,, (6)
and thus [p(a)] = 0 in H*(B).
Example 2. Let F : N — M be a smooth map. Then F* : Q*(M) — QF(N)

commutes with the differential and therefore induces a map on cohomology.

1.3. Connecting Homomorphism

Definition 5. A sequence of cochain complexes

0ALBLC—0 (7)

is called short exact if ¢ and j are cochain maps and for every k € Z the
sequence

0 A L BR Lk 0 (8)

is short exact.



Given the data of a short exact sequence of cochain complexes, one can construct
the following linear map 6* : H*(C) — H**1(A), called the connecting ho-
momorphism. Its purpose will become clear via the zig-zag-Lemma, Lemma
1

Let k € Z be arbitrary and consider the following diagram:

J

O Ak+1 i Bk+1 Ck:+1 _ 0
d d d

0 Ak — 1 gk J ck 0
d d d

0 Ak-1 Ly gk J okl 4

Now consider the following steps:

e Let [¢] be an arbitrary element in H*(C). That is, let ¢ € C¥ Nkerd

e Since the middle sequence in the above diagram is exact at C*, the map
j is surjective and there exists a b € B¥ s.t. j(b) = c.

e Apply d to b to obtain db € B¥*+1,

e Since j is a chain map and ¢ € kerd we have j(db) = d(j(b)) = d(¢) = 0.
Hence db € ker j and thus, since the upper sequence is exact at B**1, the
element db lies in the image of .

e Hence there exits an element a € A**! s.t. i(a) = db.

e Inorder to see that a € A¥*'Nker d, note that i(da) = d(i(a)) = d(db) = 0.
Since the upper sequence is exact at A1, the map i is injective and thus
da = 0.

We define the connecting homomorphism 6* : H* €) — HE+1 (A) via 6*[c] = [a].
The above is summarized in the following diagram

a—

h————¢

1 1

oras 6* =i lodoj ', where i~' and j~! is to be understood as choosing
one element in the pre-image. By tracing through the argument with another
¢ € C*Nkerd as well as ¢+ ¢, we note that this map is linear. In order to show
that it is well defined i.e. that [a] depends neither on the choice of representative



¢ of [c], nor on the choice of pre-image b, under the map j, of that representative
¢ (note that the choice of pre-image of db was unique since ¢ is injective), we
argue as follows:

Let ¢ € C* Nkerd be another representative of [¢]. Then we want show that
a —a’ is a coboundary i.e. that there is a z € A* s.t. a — a’ = dz.

e Since ¢ — ¢ represents [0] there is a € C*~1 s.t. ¢ — ¢/ = dx.

e Since the sequence is exact at C*~1, the map j is surjective and thus there
exists a y € B¥ ! s.t. j(y) = =

e Note that the element u := (b —b') — dy € B* lies in ker j since

j(dy — (b =b")) =j(dy) — j(b— V) =dx — (c— ') = 0. (9)
e Thus, by exactness at B¥, there is a z € A¥ s.t. i(2) = u.

e Finally,

i(dz—(a—a")) = d((b—b")—dy))—i(a—a’)) = d(b—b")—i(a—a") = 0 (10)

since a — a’ was chosen to lie in the i-pre-image of d(b —¥).
e Thus, by the injectivity of i, we conclude that dz = a — d’.

To show well-definedness with respect to the choice of pre-image of ¢, let ' be
another element in the pre-image of ¢ € C*. Then j(b—b') = ¢ —c = 0 and
hence there exists a u € A* such that i(u) = b — . But now

i(du) = d(i(w)) = d(b — V). (11)

Thus, since 7 is injective du = ¢ — ¢’ and ¢ — ¢’ is a coboundary and §* does not
depend on the choice of pre-image of c.

Theorem 1. (Zig-Zag-Lemma) Let

0 ALBLC—0 (12)

be a short exact sequence of cochain complexes. Then the sequence

Hk+1(A) i , Hk+1(8) N




is long exact.

Proof. Let k € Z be arbitrary.

e Exactness at H*(A) i.e. im§* = keri*

"C”: Let 6*[c] € H*(A). Then as in the construction of §* a represen-
tative of the class §*[c] is given by the pre-image under i of db. Thus

*67[d] = [i(67(c)])] = [db] = 0.

"2”: Let i*[a] = 0. That is, let i(a) be a coboundary in B¥. Then there is
abc B*lst. i(a) = db. Applying j to this b gives j(b) € C*~!. Tracing
back the steps in the opposite direction shows that applying 6* to [j(b)]
gives [a].

e Exactness at H*(B) i.e. imi* = ker j*

"C": Let i*[a] € H*(B). Then j*(i*[a]) = j*[i(a)] = [j(i(a))] = [0], since
(12) is exact at B*.

"27: Let [b] € ker j*. Then j*[b] = [j(b)] = 0. Hence j(b) = dc for some
c € C*=1. Since j is surjective, there is a b’ € B¥~1 s.t. j(b') = c and thus
j(b—db') =j(b) —dj(t/) = 0. Hence there is a a € A* s.t. i(a) = b—db'.
Thus i*[a] = [i(a)] = [b — db'] = [b], showing that [b] € imi*.
e Exactness at H*(C) i.e. imj* = ker 6*

"C”: Let [b] € H¥(B). Then by definition 6*;*[b] = §*[j(b)]. Now we
trace the element [j(b)] through the machinery for 6*:

We may pick b as the pre-image of j(b) in B*. Since [b] € H*(B), the

element b is a cocycle and thus db = 0. Hence db = i(0) and thus by the
injectivity of ¢ we conclude §*[j(b)] = [0].

"2": Let 6*[c] = [a] = 0 € H¥(A). Then a = da’ with ' € A*¥~1. On
the other hand we may trace back a along the path of §* to an element
ce CF 1 as

But now b — i(

a') is a coboundary since d(b—i(a’)) = db —i(da’) = 0 and
also j(b—i(a")) =

j(b) — j(i(a’)) = ¢ — 0 = ¢ by the exactness at B¥~1.

O



1.4. Mayer-Vietoris Sequence

Let M be a manifold and let {U, V} be an open cover of M with the following
inclusion maps, forming a commutative diagram of manifolds.

U
RN
nv M

|4

For every k € Z, the above maps induce the sequence

0 QM) L QR ) e QF(V) L Q" U NV) =0 (13)

defined via
iwe (iGw,ibw) = (Wo,wly), we QM) (14)
j:(w,0) = jhw—jvo =wluay — oluay, w € Q¥U) @ QF (V). (15)

We call i the restriction map and j the difference map. Together with the
respective boundary operator d, the three sequences of vector spaces (indexed
by k) form cochain complexes; in the case of Q*(U)® QF (V) this can be seen by
noting that QF(U) @ QF(V) = QF(U [ V), where ] denotes the disjoint union,
and thus d(w, o) = (dw, do).

Proposition 1. The maps ¢ and j are cochain maps.
Proof. Let k € Z be arbitrary. Let w € Q¥(M) be arbitrary. Then

d(i(w)) =

(d(ip (w), d(iy (w)) = (ig7(dw), iy (dw)) = i(d(w)). (16)
Let (w,0) € Q¥U) @ QF(V

) be arbitrary. Then
d(j(w, 0)) = d(jjw) — d(jyo) = ji(dw) — ji (do) = j(d(w,0)).  (17)
O
Proposition 2. For every k € Z, the sequence
0— QF(M) 5 QFU) @ Q5 (V) L oFUnV) - (18)
is short exact.

Proof. Exactness at QF(M) and QF(U) @ QF(V) are clear. For the exactness
at Q¥(U NV) ie. for the surjectivity of the difference map j, consider the
following?!:

Tt is generally not true that there exists a smooth extension of w € Q¥(UNV) to U or V.
So the naive idea of choosing such an extension n and defining j~!(w) = (1,0) does not work.
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Figure 1: Rewriting a function f on UNV as a difference of functions on U and
V. Fig. 26.1 [TuMf].

Let w € QF(UNV) be arbitrary and let {py, pv'} be a partition of unity subor-
dinate to the open cover {U, V'}. Then define the forms

pyw, onUNV
nu = (19)
0, on U \ supp py
and
w, onUNV
v =10 (20)
0, on V' \ supp py.

To see that ny defines a smooth k-form, note that the intersection (U NV) N
(U\supp pv) = (UNV)N(supp py )€ is an open set, on which 0 and pyw agree.
Hence they can be glues to a smooth form. The same is true for 7y .

Now we have

Ju, —nv) = nulvav +vlvav = prw + prw = w, (21)
showing that j is surjective. O

Thus, as a result the Zig-Zag-Lemma applies and we obtain a long exact se-
quence in cohomology, called the Mayer-Vietoris sequence:



T HEY U @ HEY(Y) — s BN U A V)

Let us see explicitly what the connecting homomorphism does here:

N (dCy, —dCy)

(s —Cv) — ¢

1. Let ¢ be a closed k — 1-form in U NV and let {py, pv} be a partition of
unity subordinate to {U,V}. Extend py¢ by 0 to a k — 1-form ¢y to all
of V' (same for U). Choose (—(y,y) in the pre-image of ¢ under j.

2. Apply d to obtain (—d(y,d¢y). Since ( is closed and j is a chain map
j(=d¢y,d¢v) = dj(—Cu,Cv) = d¢ = 0. Hence the difference of —d(y and
d¢y vanishes on UNV (even though of course (i + {y = ¢ which does not
vanish in general.).

3. Hence —d(y and d(y can be glued to a global k-form, which is why
(—dlu,dCv) has a pre-image o under i. The form « is both an exten-
sion of —d(y from U to M and of d(y from V to M.

4. Since (—d(y,d(y) is exact and 7 is a chain map and injective, « is closed.

Often the dimension of the cohomology groups alone gives a lot of information
about the manifold. The following Lemma gives a restriction:

Lemma 1. Let

d_ d 5
0 —% A0 2oy 4t &

dm—1
ol

A™ Ly (22)

be a long exact sequence with dim A* < oo for every k € Z. Then

Zm:(—nk dim A* = 0. (23)
k=0

Proof. We use the rank-nullity theorem dim A*¥ = dimker d + dimimd;, and
the exactness of the sequence imdj, = ker dj1 to compute



> (=¥ dim A* = " (—1)*(dim ker dj, + dim im dy,)

k=0 =0

ko

3

(—1)*(dimker dj, + dimker dj 1) + (—1)™ dim A™

|
(]

=0
imkerdy + (—1)™ ' dimkerd,, + (—1)™ dim A™ =0

Q.

Since dj is injective, the first term is 0 and since (—1)™~! dim ker d,, +(—1)" dim A™
the second two terms vanish. O

Remark. The above Lemma 1 can be slightly weakened in that the assumption
of dim A* < oo can be dropped for every third term in the sequence. In that
case, one can conclude that those spaces are also finite dimensional. To see this,
note that via rank-nullity

dim A* = dimker dj, + dim im dj, (24)
=dimimdy_; + dimker dj 1 (25)
< dim A*1 4 dim AF ! < 0. (26)

In particular, in the setting of the Mayer-Vietoris sequence, this implies that if
U, V and U NV have finite dimensional deRham cohomology, then so does M.

Proposition 3. In the situation as above, if U, V, and U NV are connected,
then

(i) the sequence

0— HY(M) S HOU) & HO (V) L HOWUNV) =0 (27)
is short exact and M is connected.

(ii) the long exact sequence

0 HY (M) S H\U) & HY(V) L H (UNV) > ... (28)
1s also exact.

Proof. (i) By the exactness of the Mayer-Vietoris sequence, we only need to
show that j* is surjective. To see this, recall that HO(U)®H® (V) and H(UNV)
consists of pairs of functions, each constant on U, V', and U NV, respectively,
and j assigns to any pair the difference of the restrictions to U N'V. Thus, any
constant function on U NV with value a € R is the image of (a,0) under the
map j*.

From Lemma 1 and the exactness of (27) we get dim H°(M) — 2 + 1 = 0, thus
dim H°(M) = 1 and hence that M is connected. A point-set-topological proof
is of course also possible.

(i) By (i), the map 6* : HO(UNV) — H'(M) is the zero map. Hence
H°(U NV) may be replaced by the zero map. O



U V

Figure 2: Covering of S!. Fig. 26.2 [TuMf].

2. Computations

2.1. Cohomology of S*

Using homotopy invariance of de Rham cohomology we note that U]V =~
RJ]R and UNV ~ R]]R. Hence the second and third column are determined.
For HO(S') = 0, recall that the dimension of H°(M) equals the number of con-
nected components of M, which in this case is 1.

Thus we are left with the following table of cohomology groups:
‘ St UIIV UnV

HT | HI(SY) 0 0
HO R ReR RoR

By Mayer-Vietoris we have the following exact sequence:

0-RSROR S ROR S HI(SY) -0 (29)

Using Lemma 1, we obtain from (29)

1-2+2—dimHY(S") =0 (30)
and thus dim H!(S!) = R.

In order to identify a generator of H!(S!), recall from the last talk that for a
closed, orientable manifold, the volume form gives a closed, but not exact form
of degree dim(M). Hence in this case, H'(S!) is generated by 6.

Another way of identifying a generator of H'(S!) is to compute it explicitly:
since (29) is exact at H'(S!) we have H'(S!) = im §*.

Consider the cohomology class [f] € H°(U NV), which is represented by the
smooth function f € C°°(S') which is 1 on the connected component containing

10



v

Figure 3: Connecting homomorphism §* : HO(U N'V) — H(S!). Fig. 26.3
[TuMf].

the north pole and 0 on the connected component containing the south pole.
Then apply 6* : i todoj L

Firstly, 71(f) = (= fv, fv) gives a function on U and V, respectively, which
is an extension of —py f from U NV to U and pyf from U NV to V, respec-
tively. Applying d gives two bump functions, each supported on the connected
component containing the north pole, and coinciding on all of U NV. Applying
i~! gives a smooth one form on S!, whose restriction to U and V is —dfy and
dfy on U and V respectively, and is thus only has support in the connected
component of U NV containing the north pole.

2.2. Cohomology of S", n > 2
Theorem 2. Letn > 1. Then

Hk(Sn){R k=0,n (31)
0 else.

Proof. n = 1: see subsection 2.1

n = n + 1: Assume the claim holds for S™. There exists an open covering
of S"*! by two discs D" of dimension n (these are the two standard charts
obtained by stereographic projection from the north and from the south pole).
The intersection of the two is homeomorphic to S”. Thus, the Mayer-Vietoris
sequence, the induction hypothesis, and the fact that the dimension of H°(S™)
equals the number of connected components, give that the following is an exact
sequence.

11
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Figure 4: Covering of the torus. Fig. 28.1. [TuMTf].

SnJrl DnJrl H ]D)n+1 SK
Hn+1 Hn+1 (Sn-i-l) 0 0
H™ H"(S"+1) 0 R
anl anl(SnJrl) O 0
H! H! (S"+1) 0 0
H° R ReR R
In particular, this gives that
0—R— H"(S") =0 (32)
and
00— HS") 50, 2<k<n-1 (33)

are exact and hence H"T1(S"*1) =2 R and H*(S"*!) = 0. Furthermore, Lemma
1 shows that H(S"*1) = 0. O

2.3. Cohomology Vector Space of the Torus

Choose a covering of the torus as follows:

Then A and B have the homotopy type of S! and thus their cohomology is
isomorphic. This gives

| st UV UnV
H? | H*(M) 0 0

H'(S') ReR RoR

HO R RoR RoR

Now, Lemma 1 gives

1—-2+42—dim H'(M)+2—2+dim H*(M) =0 = dim H (M) = dim H*(M)+1,

(34)
and furthermore the exactness of the sequence gives

12



H*(M) = im 6} = (ROR)/ ker 67 = (ROR)/im j*. (35)

Thus the computation boils down to understanding the image of j*. Recall that
7" is defined by

3w, ) = Gpw)luav = Gvm)luav (36)

where jj;w and j{ 1 are restrictions of w and 7 from U, resp. V,to UNV. In
our case, observe that

j*(eA’eB) = (014 —0p,04 — 03)7 (37)
which gives im j* = R. Thus H?(M) = R and hence H'(M) 2 R&R.

2.4. Cohomology Ring of the Torus

In order to obtain more refined statements about the cohomology of the torus,
we use the fact that one can obtain T2 as a quotient of R? (on which one knows
the cohomology well). In particular, with A := Z2, we have

T2 =R? /A. (38)

Note that since 7 : R* — T2 is the quotient of a smooth manifold by the smooth,
proper, and free action of a discrete Lie Group A, the map 7 is a normal cover-
ing and in particular is a local diffeomorphism.

For a A € A define the translation function Iy : R* — R? via Ix(q) = ¢ + \.
Then we have to following Proposition.

Proposition 4. The pullback ©* : Q(T?) — Q(R?), induced by the projection
7 :R? = T2, is injective and
™ (QF(T?)) = {w € Q" (R?) : I} (w) = w, VA € A}. (39)

Proof. More generally, let w: M — N be a surjective submersion i.e. a smooth
function s.t. m, : T, M — Ty (,) N is a surjection for every p € M. Let w € QOF(N)
st. m™(w) =0 € QF(M), let wy,...,wp € T,N be arbitrary, choose a point
p € m1q C M and define v; := 7, ! (w;). Then we have

w(wy,...,wg) = w(me(vy), ..., me(vg)) = 7" (W) (v1, ..., 0%) =0, (40)

ie. w=0.

For the ”C” -inclusion of the characterization of the image of 7*, note that for
any A € A and any ¢ € R? we have

(molx)(q) =7(g+A) =7(q), (41)

ie. moly = m and thus by functoriality 7* = [ o 7*, showing that for any
w e QT?)

mrw =1} o mw. (42)

13



For the ”D”-inclusion, assume that @ € QF(R?) is invariant under I3 for any
A€ A. For any p € T? and vy, ...,v; € T,T?, define

wp(v1, ..., v) == w501, ..., Tk) (43)

for a choice of p € 7=1(p) and vy,...,0% € Ty R? s.t. m,0; = v;. Note that if
P is chosen, there is a unique choice for vy, ..., 7 since m, is an isomorphism
on each tangent space. Hence, in order to show well definedness of w, we only
need to show independence of the choice of p. To do this, let p=p+ A\, A € A
be another point in 7~!(p). By the invariance under [} we have

wp = ([3w)p = 3 (@p4r)- (44)

and thus
ajﬁ(@l""’@k) :li(a}ﬁ+)\)(®17'”7®k> (45)
= Wpra(lax, - ooy IasDg)- (46)

Since woly = m we have m,0ly, = 7, and hence (46) shows that w, is independent
of the choice of p. Finally, by definition of w we have

@13(’(71, e ,’Uk) = wﬂ.(ﬁ)(ﬂ'*’ljl, . ,T*@k) = (7'(*0.));5(771, ce ,@k). (47)

Hence, w = 7*w. O

We will now explicitly describe the ring structure on H*(7?).
Let z,y be the standard coordinate maps on R%. Then for any A € A we have

I (dz) = d(Iiz) = d(z + \) = dz (48)

and thus by Proposition 4, both dz and dy arise as pullbacks of forms « and
on T?2. Furthermore we have

7 (da) = d(r*a) = d(dz) = 0. (49)
Since m* was injective, « is closed and thus defines a class in H*(T?).
Proposition 5. The forms 1,a, 3,a A 3 represent a basis of H*(T?).

Proof. Let I? := [0,1]2, let i : I? < R? be the canonical inclusion and define
i=moi:I? = T?% Then F*a = i*(7*a) = i*dx is the restriction of dz to
unit square.

We compute:

1,1
/ alf = alAp = F*(anp) = dx/\dy:/ / dzdy = 1. (50)
M F(12) 12 o Jo

I2

Thus, the form a A 8 represents a non-zero cohomology class, since otherwise
by Stokes, the above integral were 0. Since dim H?(T?) = 1 we conclude that

14



G Cy
Figure 5: Parametrization and curves on the torus. Fig. 28.2. [TuMf].

[ A B] forms a basis of H?(T?).

In order to see that «, 3 form a basis of H(T?), consider the two maps i1, is :
I — R given by i1(t) = (¢,0) and i5(t) = (0,t). The two curves induce two
closed curves C,Cs in T? via C}, = 7 o 4;. Furthermore

Cla=dirm"a =1ijdx =dijx = dt
Cip=in"f=ijdy=dijy=0

and thus

1
/a:/ a:/Cl*a:/dtzl
Cy Ci (1) I 0

1
f2= f = fieio= [ o=
Cq C1(I) I 0

A similar argument is true for Cy giving |, o, B # 0. Thus, neither o nor g is
exact on T2, and hence both define non-trivial cohomology classes [a] and [f].
The two classes are linearly independent as otherwise f02 a#0= f02 =0
which is not true.

Since T? is connected, H°(T?) is one-dimensional and thus generated by the
cohomology class induced by the constant function. O

In conclusion, the algebra H*(T?) is isomorphic to

N(a.b) =T(Rz @& Ry)/(2®, y* vy +yz), deg(x)=degy)=1  (51)

where T'(V) is the tensor algebra on the vector space V and Rz @Ry is the two
dimensional, real vector space generated by x and y. This algebra is called the
exterior algebra of degree 1.

15



Figure 6: Punctured compact oriented surface M. Fig. 28.3. [TuMf].

2.5. Cohomology of Genus g-Surfaces

Lemma 2. Let M be a compact, oriented surface, let p € M and leti : S* — M\
{p} be the inclusion of a small circle around the puncture. Then the restriction
map

i HY(M\ {p}) - H'(S") (52)
is the zero map.

Proof. Let w € QY(M \ {p}) be closed and let D C M be an open disc in M
bounded by C = i(S!). Then

/i*w:/ w:/ dw = (53)
st 8(M\D) M\D

Since H!(S') = R, with the isomorphism given by integration, this shows that
i*w] =0 O

Proposition 6. Let T? be a torus and let p € T?. Then A :=T?\ {p} has the
following cohomology:

R , k=0
HY(A)={R? | k=1 (54)
0 , k>2.

Proof. Cover T? by A and an open disk U around p. Since A, U, and U NV
are connected, by Proposition 3, we may start the Mayer-Vietoris sequence with
HY(T?). Using ANU ~S* and U =~ {x}, we obtain

T? AllU ANU
H?>| R  H*A)ad0 0
H!' | RoR H!'(A)@o0 R

Since H(U) = 0, the difference map j* on the level of H'! is simply the restric-
tion map and by Lemma 2 this restriction is 0. Hence, on the level of H', the
morphism ¢* is an isomorphism i.e.

H'(A)~ROR, (55)

and furthermore the following sequence is exact:
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0—-R—=R— H*A) -0 (56)

and thus by dimension counting (i.e. Lemma 1) we conclude H?(A) = 0. O

Proposition 7. (cohomology of genus g surface) Let g > 0 and let £, denote
a compact, orientable surface of genus g. Then

R , k=0
R* | k=1

H*(2g) = R k—o (57)
0o ., k

Proof. The proof will proceed via induction. The base case ¥y = S? is covered
by subsection 2.1.

For the induction on g, assume H*(3,) according to equation (57). Similarly
to Proposition 6, let us first compute the cohomology of the punctured genus
g surface A, := X, \ {p}. As for the torus,cover ¥, by A, and a small disc
U around the puncture. Then since the Ay, U and A, NU are connected, by
Proposition 3, we may start the Mayer-Vietoris sequence with H 1(29). As with
the torus, using that U ~ {*} and A, N U ~ S', we get

| %, AJIU AnNU
H>| R H*A) @0 0
H' | R* HY(A) &0 R

Again, j* is simply the restriction, which, by Lemma 2, is the 0-map. Hence we
have

R = H'(A) (58)
and by dimension counting H?(A) = 0.

Now, for the computation of H*(X441), cover X441 with A, and the punctured
torus Ap, with A;NA; is homeomorphic to a cylinder (which is in turn homotopy
equivalent to S'). Since ¥,41 is connected, H’(X,41) = 0. On the one hand,
since the map H?(¥X,41) — 0 has as its kernel all of H*(X,41), the map R —
H?(3,4+1) must be surjective. Hence dim(H?(X,41)) < 1. On the other hand,
Yg+1 is an oriented closed manifold, and thus admits a volume form, which, by
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Stokes, is not exact. Hence dim(H?(X,41) > 1 and thus dim(H?(3,11)) = 1.
Finally, dimension counting via Proposition 1 gives dim(H'(3,11)) = 2(g +

1).

O

3. Some classical applications

We want to show

Theorem 3. (Jordan-Brouwer separation) Let n > 2 and ¥ C R™ be homeo-
morphic to S*™1. Then

1. R? \X has ezactly 2 connected components, Uy and Us, one of which being
bounded and one of which being unbounded,

2. 3 is the boundary of both Uy and Us.
We say that Uy is the domain inside ¥ and Us is the domain outside X.

Before proving this, we need a couple of Lemmas though. Firstly, recall the
Tietze extension theorem:

Theorem 4. (Tietze Extension) Let A C R" be closed and let f: A — R™ be
continuous, then there exists a continuous function f:R"™ — R™ s.t. fla=f.

Remark. The theorem is usually stated more generally with R™ replaced by an

arbitrary normal topological space X and is actually equivalent to the normality
of X.

Lemma 3. Let A C R" and B C R™ be closed sets and let ¢ : A — B be a
homeomorphism. Then there is a homeomorphism h : R"*™ — R"*™ s.t. for
every x € A

h(ﬁc, Om) = (07L7 ¢($)) (59)
where Oy is the 0 in the first k components.

Proof. By the Tietz extension theorem 4 one can extend ¢ to a continuous
function ¢ : R"™ — R™. Define firstly a homeomorphism h; : R" x R™ —
R"™ x R™ by

h(z,y) = (2, + o(x)). (60)

Analogously, one can extend 1 := ¢! to a continuous function 7,/? :R™ — R"
and define hg : R" x R™ — R" x R™ via

ha(w,y) = (@ +9(y),y)- (61)
Define h := hy ' o hy. Then for every » € A we have

h(,0m) = hy ' (ha (2, 0m)) = hy ' (x, 6(x)) (62)
= (z = P(d(), §(x)) = (& = Y(d(2)), $(x)) (63)
= (z =z, 0(x)) = (0,¢()) (64)
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Corollary 1. Any homeomorphism ¢ : A — B between closed sets A, B C R"
can be extended to a homeomorphism ¢ : R*" — R*".

Proof. Compose the homeomorphism h from Lemma 3 with the homeomor-
phism which exchanges the first n components with the second n. O

Remark. Note that by restricting ¢ to R*™\A we obtain a homeomorhism
R?"\A — R?*"\B. But note that this does not imply, and it is generally
false, that R"\A — R"\ B are homeomorphic. In fact, this would contradict
the existence of the Alexander horned sphere ¥ in R3: even though ¥ is home-
omorphic to S?, its complement, R? \X, is not homeomorphic to R? \S?, as the
former is not simply connected. However, the abelianization of 71 (R*\¥) is 0,
which is why the following theorem does not pose a contradiction.

Proposition 8. Let A & R" be closed. Then we have

HPPH(R'I\A) = HP(R"\A), p>1,
HYR"T\A4) =~ HO(R"\A4)/R-1
HO(R™™1\A) = R-1.

Proof. Identify R"*' = R™ x R and define the following two sets

Uy == R"™ x(0,00) U (R"\A) x (~1, 00)
Uy = R" x(—00,0) U (R"\ A) x (—00,1)

Then we have U; UUs = R"™\ A and U; N Uy = (R™\A) x (—1,1). Define by
d(x1, .. Tny1) = (X1, .., Zp, Zpy1+1). Then for every x € Uy, the set Uy con-
tains a line segment from z to ¢(z) and from ¢(x) to a point p € R"™ x(0, c0).
Maybe draw a picture with n = 1 to convince yourself of that. Hence U; is
contractible (to the point p). Analogously, Us is contractible.

Note that R™ \ A deformation retracts to U; N Uz and hence their cohomology is
isomorphic. By the Mayer-Vietoris sequence we obtain an isomorphism via the
connecting homomorphism

& HP(U, NUy) — HPTHR™ T\ A) (65)

for p > 1. For the second isomorphism consider the following exact sequence,
obtained via Mayer-Vietoris:

HY(R" M\ A) ——— 0
6*

-k

0 ———— HOR™\A) 55 HOUy) & HO(Uy) S5 HO(U N Uy)
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Elements in H°(U;) @ H°(Us) are given by pairs of constant functions on U and
U, with values a; and as. The image of (ag, az) is thus the constant function on
Uy NUs with value a; —as. Thus by the exactness othe Mayer-Vietoris sequence

ker* =imj* =R -1, (66)
where 1 is the constant function on U; N U with value 1. Thus we obtain
HY(R"1\A) = HO(U, NUy)/ ker 6* = H(R"\A)/R-1. (67)
We also have by the above Mayer-Vietoris sequence and its exactness
dim HO(R"**\ A) = dim(im*) = dim(ker j*) = 1 (68)
and thus HO(R"T1\A) = R. O

Theorem 5. Let A, B & R" be closed subsets s.t. A and B are homeomorphic.
Then

HP(R™\A) = H"(R"\B), p=>0. (69)

Proof. Applying Proposition 8 m > 1 times yields

HPFM (R A) =2 HP(R™\A) (70)
H™(R"™\A) = HOR"\A)/R 1. (71)

The same is true for B. By corollary 1 we know that R?"\ A and R**\B are
homeomorphic and thus have the same de Rham cohomology. Thus

HP(R"\A) = HPT(R?™\A) = HPY"(R*\B) = HP(R"\B), p>1. (72)

and

HO(R"\A)/R-1 = H"(R*"\A) = H"(®"\B) = H(R"\B)/R-1.  (73)
O

Corollary 2. Let A, B be two closed homeomorphic subsets of R™. Then R"™ \ A
and R"\B have the same number of connected components.

Proof. If A = B = R" this is clear. If A # R"™ and B # R", this follows from
theorem 5. If A =R" but B # R", then considering A and B as closed subsets
of R"™! and applying theorem 5 again yields

2 = dim HO(R"**\ A) = dim H*(R"™'\B) = 1 (74)
a contradiction. Hence A and B cannot be homeomorphic to begin with. O

Now let us turn to the proof of the Jordan-Brouwer separation theorem 3:
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Proof. (i) Since S"~1 is compact, so is ¥ and thus ¥ is closed in R”. Since S*~!
separates R" into the two connected components

int(D™") ={z eR" : |jz|| <1} and W :={zx € R": || > 1} (75)

by corollary 2, R™\X also has two connected components. Furthermore, with
7 = maxgey ||z]|, the connected set r - W is contained in one of the two con-
nected components Us of R™ \X, which is thus unbounded. Hence for the other
component, Uy, we have

U CR"\Uzy ={z e R" : ||z|]| < r}. (76)

Thus U; is bounded.

(ii) Let p € ¥ and let V' C R"™ be an arbitrary open neighborhood of p. Then the
set A: =%\ (XNV)is closed in ¥ and homeomorphically mapped to a proper,
closed subset B of S*~1. Since S"~! is closed in R”, the set B = S*" ' N B is
closed in R". Furthermore, since B is a proper subset of S*~1 we see that R™ \ B
is connected, and thus by corollary 2 so is R™ \ A. Since R \ A is an open subset
of R™ and connected, it is path-connected. Hence for any p; € Uy and py € Uy
one can find a continuous curve v : [0,1] = R"\ A s.t. v(0) = p; and (1) = pa.
By (i), the curve v (now considered as a curve into R™) has to intersect X,
since otherwise U; and U; would lie in a common path component. The set
7~1(X) C [0,1] is closed, hence compact, and hence contains ¢; = min~y~1(X)
and ¢z = maxy~*(3), both of which lie in (0, 1) since p1,p2 & X. Hence

Y1) €XNV and q(e) €XNV (77)

but also

¥([0,¢1)) CU; and  ~((c2,1]) C Us. (78)

Hence there exist t1 € [0,¢1) and t3 € (c2,1] s.t.

v(t1)) CUI NV and ~(ta) CU;NV. (79)

showing that p is indeed a boundary point of U; and also of Us. In order to see
that all boundary points of U; have to be contained in ¥, note that since R" \X
is an open subset of R"™, all of its connected components are open. Hence for
any p € U, there is a neighborhood V of p, which is disjoint from U;. The same
argument holds for Us. O

Theorem 6. Let A C R™ be homeomorphic to the closed k-disk D* with k < n.
Then R™\ A is connected.

Proof. Since A is homeomorphic to D¥, it is compact and thus closed in R¥
R™. Hence by corollary 2 the number of connected components of R \ A coin-
cides with that of R™ \D*, which is 1. O

Theorem 7. (Brouwer) Let U C R™ be open and let f : U — R"™ be continuous
and injective. Then f(U) C R"™ is open and f : U — f(U) is a homeomorphism.
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Proof. Since U is open in R", it is a union of open balls B(r,z) around points
x € U. Hence, since images preserve unions, it is sufficient to show that the
images f(B(r,x)) are open. Let r > 0 and x € U be arbitrary s.t. B(r,z) CU
and write D := B(r,z), S := D and D := int(D) = B(r,z). Then since S is
compact and R" is Hausdorff, ¥ := f(.5) is homeomorphic to S, which is home-
omorphic to S"~1. Thus by theorem 3, the subspace R™ \¥ has two connected
components, U; (which is bounded) and U, (which is unbounded); since R™ \X
is open, so are U; and Us. By theorem 6, the subspace R™\ f(D) is connected,
and since it is disjoint from 3, it must be contained in either U; or Us. Since
f(D) is compact, the subspace R™\ f(D) is unbounded and thus must be con-
tained in Us. Hence X U U; = R"\U; C f(D). Hence Uy C f(D) Since D is
connected and thus f(D) is also connected, and furthermore f(D) C Uy U Us
we conclude that f(D) C Us since otherwise U; C Us. Thus Uy = f(D), which
is open.

Let W C U be an open subset. Then by restricting f to W and applying the
same argument as above we see that f(1V) is also open. Hence f is a continuous,
open bijection i.e. a homeomorphism. O

Corollary 3. (Invariance of Domain) Let A C R"™ have the subspace topology
induced by R" and be homeomorphic to an open subset U of R". Then A is
open in R™.

Proof. Follows by applying Theorem 7 to U. O

Corollary 4. (Invariance of Dimension) Let U C R™ and V. C R™ be non-
empty open subsets. If U and V' are homeomorphic, then n = m.

Proof. Assume that m < n and consider V' as a (not necessarily open) subset of
R" via V C R™ C R" and topology induced by R™ (or equivalently R™). Since
V' is homeomorphic to U by assumption, corollary 3 implies that V' is open an
open subset of R™. This is a contradiction since V is contained in a proper
linear subspace of R". O
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