Charaktere von Darstellungen endlicher Gruppen

G. Chiusole

1 Spur einer Matrix

Definition 1. Sei \mathbb{F} ein Körper. Sei $A = (a_{ij}) \in \operatorname{Mat}_{n \times n}(\mathbb{F}, \mathcal{B})$ eine Matrix relativ zu einer Basis \mathcal{B} mit Koeffizienten in \mathbb{F} . Dann heißt $\operatorname{tr} : \operatorname{Mat}_{n \times n}(\mathbb{F}, \mathcal{B}) \to \mathbb{F}$ mit

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii} \tag{1}$$

die $Spur\ von\ A$.

Proposition 1. Sei \mathbb{F} ein Körper, V ein n dimensionaler \mathbb{F} Vektorraum und $A = (a_{ij}), B = (b_{ij}) \in Mat_{n \times n}(\mathbb{F}, \mathcal{B})$ Matrizen über \mathbb{F} relativ zur Basis \mathcal{B} und $\lambda \in \mathbb{F}$. Dann gilt

- (i) tr(A+B) = tr(A) + tr(B)
- (ii) $tr(\lambda A) = \lambda tr(A)$
- (iii) tr(AB) = tr(BA). All gemeiner gilt $tr(\prod_{i=1}^{n} A_i) = \prod_{i=1}^{n} tr(A_{\sigma(i)})$ mit $\sigma \in S_n$ wenn σ eine zyklische Permutation ist. Sind die A_i stets symmetrisch, so gilt der Satz für beliebige $\sigma \in S_n$
- (iv) i.A. und üblicher Weise $tr(AB) \neq tr(A)tr(B)$. Im Fall n = 1 gilt die Gleichung.
- $(v) \ \forall S \in GL_n(V) : tr(S^{-1}AS) = tr(A)$

Proof. Seien $A = (a_{ij})$ und $B = (b_{ij})$. Dann gilt

(i)
$$\operatorname{tr}(A+B) = \sum_{i=1}^{n} (a+b)_{ii} = \sum_{i=1}^{n} a_{ii} + b_{ii} = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = \operatorname{tr}(A) + \operatorname{tr}(B)$$

(ii)
$$\operatorname{tr}(\lambda A) = \sum_{i=1}^{n} (\lambda a)_{ii} = \sum_{i=1}^{n} \lambda a_{ii} = \lambda \sum_{i=1}^{n} a_{ii} = \lambda \operatorname{tr}(A)$$

(iii)
$$tr(AB) = \sum_{j=1}^{n} a_{ij}b_{ji} = \sum_{i=1}^{n} b_{ji}a_{ij} = tr(BA)$$

(iv) Beispiel: $tr(I_n) = n \neq n^2 = tr(I_n)tr(I_n)$

(v)
$$\operatorname{tr}(S^{-1}AS) = \operatorname{tr}((S^{-1}A)S) = \operatorname{tr}(S(S^{-1}A)) = \operatorname{tr}(A)$$

Definition 2. Sei V ein $\mathbb{F}G$ -Modul mit Basis \mathcal{B} . Dann nennt man die Funktion

$$\chi: G \to \mathbb{F} \tag{2}$$

$$g \mapsto \operatorname{tr}[g]_{\mathcal{B}}$$
 (3)

den Charakter des $\mathbb{F}G$ -Modul.

Remark 1. Merke $\chi = \operatorname{tr} \circ \rho$:

$$\chi: G \xrightarrow{\rho} GL_n(V) \xrightarrow{\operatorname{tr}} \mathbb{F}$$
 (4)

$$g \mapsto [g]_{\mathcal{B}} \mapsto \operatorname{tr}[g]_{\mathcal{B}}$$
 (5)

Remark 2. Der Charakter eines $\mathbb{F}G$ - Modul hängt nicht von Basis \mathcal{B} ab: Seien \mathcal{B} und \mathcal{B}' zwei unterschiedliche Basen von V, dann ist

$$\chi([g]_{\mathcal{B}}) = \chi(S^{-1}[g]_{\mathcal{B}'}S) \quad S \in GL_n(V)$$

$$\tag{6}$$

nach Proposition 2 (v). Folglich spricht man von dem Charakter eines $\mathbb{F}G$ -Moduls und nicht von einem.

Der Charakter einer Darstellung $\rho: G \to GL_n(\mathbb{F})$ sei nun definiert als der Charakter des zugehörigen $\mathbb{F}G$ -Modul; also

$$\chi(g) = \operatorname{tr}(\rho(g)) \ . \tag{7}$$

Definition 3. • " χ ist ein Charakter der Gruppe G" \Leftrightarrow " χ ist der Charakter eines $\mathbb{F}G$ -Modul"

- " χ ist ein irreduzibler Charakter der Gruppe G" \Leftrightarrow " χ ist der Charakter eines irreduziblen $\mathbb{F}G$ -Modul"
- " χ ist ein reduzibler Charakter der Gruppe G" \Leftrightarrow " χ ist der Charakter eines reduziblen $\mathbb{F}G$ -Modul"

Proposition 2. (a) Seien V und W isomorphe $\mathbb{F}G$ -Module, dann haben sie den gleichen Charakter χ .

(b) Seien $x, y \in G$ und $g \in G$ mit $gxg^{-1} = y$, dann gilt $\chi(x) = \chi(y)$ für einen beliebigen Charakter χ .

Remark 3. Proposition 2 ist tatsächlich eine Äquivalenz. Beweis in Vortrag 7. Die Umkehrung des zweiten Teiles der Proposition ist nicht richtig und sogar üblicherweise falsch. Der triviale Charakter ist ein Beispiel.

Definition 4. Sei χ der Charakter eines $\mathbb{F}G$ -Modul V, dann ist der $Grad \ von \ \chi$ als die Dimension von V definiert.

Example 1. (1) Sei V ein $\mathbb{F}G$ -Modul der Dimension 1. Dann gilt

$$\forall g \in G \exists \lambda_g \in \mathbb{F}, \forall v \in V : gv = \lambda_g v \tag{8}$$

Dann ist $\chi(g) = \lambda_g$. Charaktere vom Grad 1 nennt man *lineare Charaktere*; sie sind irreduzibel.

Merke dass lineare Charaktere Homomorphismen $G \to \mathbb{F}^{\times}$ sind. Es sind die einzigen Charaktere, welche Homomorphismen solcher Art sind. Ist der Grad eines Charakters ≥ 2 so gilt natürlich i.A. tr $([g]_{\mathcal{B}}[h]_{\mathcal{B}}) \neq \text{tr}[g]_{\mathcal{B}}\text{tr}[h]_{\mathcal{B}}$.

(2) Sei V der triviale $\mathbb{F}G$ -Modul. Der Charakter von V ist dann ein linearer Charakter und es gilt

$$\forall g \in G : \chi(g) = \operatorname{tr}[g]_{\mathcal{B}} = \operatorname{tr}(1) = 1 \tag{9}$$

2 Werte von komplexen Charakteren

Merke: von nun an $\mathbb{F} = \mathbb{C}$.

Proposition 3. Sei χ der Charakter eines $\mathbb{C}G$ -Modul V mit dim V=n und sei $g\in G$ mit |g|=m. Dann gilt

- (a) $\chi(1) = \dim(V) = n$
- (b) $\chi(g) = \sum_{i=1}^{n} \omega_i^r$, $\omega = e^{\frac{2\pi i}{m}}$
- (c) $\chi(g^{-1}) = \overline{\chi(g)}$
- (d) g konjugiert zu $g^{-1} \Rightarrow \chi(g) \in \mathbb{R}^{2}$.

Für ein $g \in G$ mit ord(g) = 2 lassen sich noch präzisere Aussagen treffen:

Corollary 1. Sei χ ein Charakter von G und $g \in G$ mit ord(g) = 2. Dann gilt $\chi(g) \in \mathbb{Z}$ und

$$\chi(g) \equiv \chi(1) \mod 2 \tag{10}$$

Proof. Nach Proposition 3 gilt

$$\chi(g) = \sum_{i=1}^{n} \omega_i^r \tag{11}$$

wobei $\chi(1) = n$ und jedes ω_i eine 2. Einheitswurzel. Also $\omega_i \in \{+1, 1\}$. Sei nun r die Anzahl derer ω_i welche +1 und s die Anzahl derer, welche -1 sind. Damit also

$$\chi(g) = r - s \quad \text{und} \quad \chi(1) = r + s \tag{12}$$

Es gilt dann also auch $\chi(g) \in \mathbb{Z}$ und

$$\chi(g) = r - s = r + s - 2s = \chi(1) - 2s \tag{13}$$

also $\chi(g) \equiv \chi(1) \mod 2$.

Theorem 1. Sei $\rho: G \to GL_n(\mathbb{C})$ eine Darstellung von G und χ ein Charakter von ρ . Dann gilt für ein beliebiges $g \in G$

- (1) $|\chi(g)| = \chi(1) \Leftrightarrow \rho(g) = \lambda I_n \text{ für ein } \lambda \in \mathbb{C}$
- (2) $\ker \rho = \{g \in G | \chi(g) = \chi(1)\}$

 $^{^{1}\}mathrm{Erinnerung}\colon Der$ triviale $\mathbb{F}G\text{-}\mathrm{Modul}$ ist per Definition 1-dimensional.

 $^{^2}$ Der triviale Charakter ist ein Gegenbeispiel für die Umkehrung. Beispiel der D_6 ist ein weiteres.

Proof. (1) Sei $g \in G$ mit $\operatorname{ord}(g) = m$. Angenommen $\rho(g) = \lambda I_n$ für ein $\lambda \in \mathbb{C}$, dann gilt nach Homomorphie

$$I_n = \rho(1) = \rho(g^m) = (\rho(g))^m = (\lambda I_n)^m = \lambda^m I_n^m \Rightarrow \lambda^m = 1 \Rightarrow |\lambda| = 1 \quad . \tag{14}$$

Mit

$$\chi(g) = \operatorname{tr}(\rho(g)) = n\lambda \tag{15}$$

folgt $|\chi(g)| = n = \chi(1)$.

Sei nun $|\chi(g) = \chi(1)$. Dann existiert nach Proposition 9.11 [JL] eine Basis \mathcal{B} mit

$$[g]_{\mathcal{B}} = \operatorname{diag}(\omega_1, \dots, \omega_n) \tag{16}$$

wobei die ω_i mit $i \in \{1, ..., n\}$ jeweils m-te Einheitswurzeln sind. Dann gilt

$$\chi(g) = \text{tr}([g]_{\mathcal{B}}) = |\sum_{i=1}^{n} \omega_i| = \chi(1) = n = |\omega'| n$$
(17)

wobei ω' eine Einheitswurzel ist. Die obere Gleichung stimmt also genau dann wenn $\forall i \in \{1, \ldots, n\} : \omega_i = \omega'$ mit ω einer m-ten Einheitswurzel. Also ist $g = \omega' I_n$.

(2) Sei $g \in \ker \rho$. Dann $\chi(g) = \chi(I_n) = n = \chi(1)$. Sei $\chi(g) = \chi(1)$. Dann nach obigem $\rho(g) = \lambda I_n$, also $\chi(g) = \lambda n = \lambda \chi(1)$. Also $\lambda = 1$ und damit $\rho(g) = I_n$ und damit $g \in \ker \rho$.

Definition 5. Sei χ ein Charakter von G. Dann sei $der Kern von <math>\chi$ definiert als

$$\ker \chi = \{ g \in G : \chi(g) = \chi(1) \}$$

$$\tag{18}$$

Merke:

- Mit der vorhergehenden Proposition gilt ker $\rho = \ker \chi$
- $\ker \chi \leq G$
- Ein Charakter χ heißt treu falls $ker \chi = \{1\}$

Proposition 4. Sei χ ein Charakter von G. Dann ist $\overline{\chi}$ definiert durch $\forall g \in G : \overline{\chi}(g) = \overline{\chi(g)}$ ebenfalls ein Charakter auf G. Ist χ irreduzible, dann ist es auch $\overline{\chi}$.

Proof. Merke dass $\overline{(-)}: GL_n(\mathbb{C}) \to GL_n(\mathbb{C})$ ein Homomorphismus ist. Daher ist auch

$$\overline{\chi}: G \to GL_n(\mathbb{C}) \to GL_n(\mathbb{C}) \to \mathbb{C}$$
 (19)

eine Darstellung von G.

³Da komplexe Konjugation eine Involution ist, gilt hier auch die Rückrichtung.

3 Reguläre Charakter

Definition 6. Der reguläre Charakter χ_{reg} einer Gruppe G ist der Charakter des regulären $\mathbb{C}G$ -Modul.

Proposition 5. Sei $V = \bigoplus_{i=1}^r U_i$ ein $\mathbb{C}G$ -Modul mit U_i irreduzible $\mathbb{C}G$ -Moduln. Dann gilt $\forall g \in G$:

$$\chi_V(g) = \sum_{i=1}^r \chi_{U_i}(g) \ . \tag{20}$$

Proof. Folgt direkt aus dem Satz von Maschke.

Proposition 6. Sei V_1, \ldots, V_k eine vollständige Menge nicht isomorpher irreduzibler $\mathbb{C}G$ -Module und sei χ_i mit $i \in \{1, \ldots, k\}$ der Charakter von V_i . Dann gilt $\forall g \in G$

$$\chi_{reg} = \sum_{i=1}^{k} d_i \chi_i(g) \tag{21}$$

Wobei $d_i = \chi_i(1) = \dim(V_i)$, also die Anzahl der $\mathbb{C}G$ -Untermoduln, zu welchen V_i isomorph ist.

Proposition 7. Sei χ_{reg} der reguläre Charakter der Gruppe G. Dann gilt

$$\chi_{reg}(g) = \begin{cases} |G| & , g = 1\\ 0 & , g \neq 1 \end{cases}$$
 (22)

Proof. Es gilt

$$\chi_{reg}(1) = \dim \mathbb{C}[G] = |G| \tag{23}$$

Sei $g_i \in G$ für ein beliebiges $i \in \{1, ..., |G|\}$, dann ist g_i ein Basisvektor der natürlichen Basis von $\mathbb{C}[G]$. Nun gilt $gg_i = g_j$ für ein $i \neq j \in \{1, ..., |G|\}$, also ist insbesondere der ii-te Eintrag der Darstellungsmatrix von g gleich 0. Da i beliebig gewählt war gilt daher

$$\chi_{reg}(g) = 0 \tag{24}$$

4 Permutationscharakter

Will man eine Gruppe als Untergruppe einer symmetrischen Gruppe S_n betrachten, so gilt es eine einfache Konstruktion eines Charakters wie folgt:

Sei G eine Untergruppe der S_n für ein fixes $n \in \mathbb{N}$ und sei V der Permutationsmodul. Dieser hat Basis $\mathcal{B} := \{v_1, \dots, v_n\}$ und ist definiert durch die Gruppenwirkung $gv_i = v_{gi}$ für ein $i \in \{1, \dots, n\}$. Nun ist

$$([g]_{\mathcal{B}})_{ii} = \begin{cases} 1 & gi = i \\ 0 & gi \neq 0 \end{cases}$$
 (25)

Definiere dazu fix $(g) = \{i \in \{1, \dots, n\} | gi = i\}.$

Dann ist der Charakter π des Permutationsmodul ist gegeben durch

$$\pi(g) = |fix(g)| \tag{26}$$

Man nennt π auch den Permutationscharakter von G.

Proposition 8. Sei $G \subseteq S_n$. Die Funktion $\nu : G \to \mathbb{C}$ definiert durch

$$\nu(g) := \pi(g) - 1 = |f(x(g))| - 1 \tag{27}$$

ist ein Charakter von G.

Proof. Sei v_1, \ldots, v_n eine Basis des Permutationsmodul von G und sei weiters

$$u := \sum_{i=1}^{n} v_i \quad \text{und} \quad U = \text{span}(u)$$
 (28)

Dann gilt $\forall g \in G : gu = u$. Die Dimension von U ist 1. Folglich ist U isomorph zum trivialen $\mathbb{C}G$ -Modul, also ist de Charakter von U der triviale Charakter: 1_G . Nach dem Satz von Maschke existiert ein weiterer $\mathbb{C}G$ -Untermodul W sodass $U = V \oplus W$. Definiere nun μ als den Charakter von W. Dann gilt $\pi = 1_G + \nu$. Also für alle $g \in G$

$$|\operatorname{fix}(g)| = 1 + \nu(g) \quad . \tag{29}$$

References

[JL] G. James, M. Liebeck, Representations and characters of groups. Second edition, Cambridge University Press, 2001.