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Motivation

”There is no infinite dimensional Lebesgue measure”

Theorem

Let (E, ‖ · ‖) be a normed space with dimE =∞. Then there is

no non-trivial, translation-invariant, σ-additive Borel measure µ

on (E, ‖ · ‖) s.t. µ[Bε(0)] <∞ for all ε > 0.

Alternative: Gaussian measures
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Notation, Review, etc.

Unless otherwise specified, H denotes a real, separable Hilbert

space.

B(H)... Borel σ − algebra on H

L(H) := {T ∈ L(H)| linear, bounded}
L+(H) := {T ∈ L(H)| symmetric, pos. semi-definite}

L+
1 (H) :=

{
T ∈ L+(H)

∣∣∣∣∣
∞∑
k=1

〈ek, T ek〉 <∞, (ek)k∈N ONB of H

}
.

For H = Rd we have

L+
1 (Rd) = L+(Rd) ⊆ L(Rd).
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Spectral Theorem for Q ∈ L+
1 (H)

Theorem

Let Q ∈ L+
1 (H). Then there exists an ONB (ek)k∈N of H and a

sequence (λk)k∈N ∈ `1 s.t.

∀k ∈ N : Qek = λkek, λk ≥ 0

in particular λk → 0 as k →∞.
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Product measures

Define

F := σ
(
{x ∈ R∞ : (xk1 , . . . , xkn) ∈ A}︸ ︷︷ ︸

Ck1,...,kn,A

: A ∈ B(Rn), n ∈ N
)

Proposition

F coincides with B(R∞) and the σ-algebra generated by the

projections.

Theorem

Let (Pk)k∈N be a sequence of probability measures on (R,B(R)).

Then there exists a unique probability measure on (R∞,F) s.t.

for every Ck1,...,kn,A we have

P(Ck1,...,kn,A) = (Pk1 × . . .× Pkn)(A).

In particular, for every i ∈ N the projection onto the k-th

coordinate πk : x 7→ xk has distribution Pk and {πk}∞k=1 is a set

of independent real valued random variables w.r.t. P.
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One-dimensional Hilbert spaces
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Definition (1-dim.)

Let a ∈ R, λ ≥ 0. Then define the measure Na,λ on B(R) by

(λ = 0) Na,λ(B) = δa(B) =

1 a ∈ B,

0 a 6∈ B
, ∀B ∈ B(R),

and

(λ 6= 0) dNa,λ(x) =
1√
2πλ

exp

{
−(x− a)2

2λ

}
dx.

9



Moments and characteristic function (1-dim.)

For a ∈ R, λ ≥ 0 we have

mean a =
∫
R x dNa,λ(x)

variance λ =
∫
R(x− a)2 dNa,λ(x)

char. function N̂a,λ(h) = exp
{
iah− 1

2λh
2
}
, h ∈ R
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Finite-dimensional Hilbert spaces
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Definition (fin. dim.)

Definition
A measure µ on H is called Gaussian, if for every h ∈ H the

functional x 7→ 〈h, x〉 has law Na,λ for some a ∈ R, λ ≥ 0.
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Construction (fin. dim.)

1. Let H be a real Hilbert space with dim(H) = d, a ∈ H,

Q ∈ L+(H). Then let {e1, . . . , ed} ⊆ H be an ONB of H s.t.

∀1 ≤ k ≤ d : Qek = λkek, λk ≥ 0 .

2. Identify H with Rd via x 7→ (〈x, e1〉, . . . , 〈x, ed〉).

3. Then define the measure Na,Q on B(H) by

Na,Q =
d

×
k=1

Nak,λk
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Is this construction Gaussian?

Theorem
Na,Q is a Gaussian measure.

Proof.
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Figure in H = R2
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Moments and characteristic function (fin. dim.)

For a,∈ H,Q ∈ L+(H) we have

mean a =
∫
H x dNa,Q(x)

covariance 〈y,Qz〉 =
∫
H〈y, (x− a)〉〈z, (x− a)〉 dNa,Q(x)

char. functional N̂a,Q(h) = exp
{
i〈h, a〉 − 1

2〈h,Qh〉
}
, h ∈ H

Proposition

If det(Q) > 0 i.e. λk > 0 for every k ∈ {1, . . . , d}, then

dNa,Q(x) =
1√

(2π)d detQ
exp

{
−1

2

〈
(x− a), Q−1(x− a)

〉}
dx.
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Separable Hilbert spaces
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Definition of mean

Let µ be a measure on (H,B(H)) s.t.
∫
H ‖x‖ dµ(x) <∞.

Then h 7→ F (h) :=
∫
H〈h, x〉 dµ(x) is bounded since

|F (h)| ≤
∫
H
|〈h, x〉| dµ(x) ≤ ‖h‖

∫
H
‖x‖ dµ(x)︸ ︷︷ ︸
<∞

Thus by Riesz’ Representation theorem ∃!a ∈ H:

〈h, a〉 =

∫
H
〈h, x〉 dµ(x), h ∈ H.

called the mean of µ.
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Intermezzo: Bochner spaces

It is clear how to integrate f : H → R when there is a measure on

H. But how about f : H → H, e.g. x 7→ x, as in the definition of

the mean?

Let (Ω,A,P) be a probability space. Then define the Bochner

space

Lp(Ω;H) :=

u : Ω→ H|u measurable,

∫
Ω
‖u(ω)‖pH dP(ω)︸ ︷︷ ︸
=:‖u‖p

Lp(Ω;H)

<∞


where 1 ≤ p <∞.
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Intermezzo: Bochner integral

Proposition

The set
{∑n

i=1 1Aihi : Ai ∈ F , hi ∈ H
}

of simple functions lies

dense in (Lp(Ω;H), ‖ · ‖Lp(Ω;H)).

Definition

For
∑n

i=1 1Aihi ∈ L1(Ω;H) define

∫ n∑
i=1

1AihidP =
n∑
i=1

P(Ai)hi ∈ H

For u ∈ L1(Ω;H), define the Bochner integral of u as

∫
u dP := lim

k→∞

∫ n(k)∑
i=1

1
A

(k)
i

h
(k)
i dP ∈ H
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Intermezzo: Bochner integral

Proposition
Let f : H → R be a bounded linear functional and

u ∈ L1(Ω;H). Then

f

[∫
u(ω) dP(ω)

]
=

∫
f [u(ω)] dP(ω)
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Characterization of the mean

Theorem
Indeed,

a =

∫
H
x dµ(x).

Proof.
Let a ∈ H be the mean of µ and let h ∈ H be arbitrary. Then

x 7→ 〈h, x〉 defines a bounded linear functional on H. Hence it

can be pulled into the integral and we have

〈h, a〉 =

∫
H
〈h, x〉 dµ(x) =

〈
h,

∫
H
x dµ(x)

〉
Uniqueness of a gives the result.
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Definition the covariance

Let µ be a measure on (H,B(H)) s.t.
∫
H ‖x‖

2 dµ(x) <∞.

Then (h, k) 7→ G(h, k) :=
∫
H〈h, x− a〉〈k, x− a〉 dµ(x) is bounded

since

|G(h, k)| ≤
∫
H
|〈h, x− a〉| |〈k, x− a〉| dµ(x)

≤ ‖h‖ ‖k‖
∫
H
‖x− a‖2 dµ(x)︸ ︷︷ ︸

<∞

Thus by Riesz’ Representation theorem there exists a unique

bounded linear operator Q : H → H s.t.

〈h,Qk〉 =

∫
H
〈h, x− a〉〈k, x− a〉 dµ(x), h, k ∈ H.

called the covariance of µ. 23



Properties of the covariance

Theorem

Let µ be a measure on (H,B(H)) s.t. a and Q exist. Then

Q ∈ L+
1 (H) i.e. Q is symmetric, positive semi-definite and of

trace class.

Proof.
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Definition of Gaussian Measures

Definition

A measure µ on (H,B(H)) is called Gaussian if

∃a ∈ H,Q ∈ L+
1 (H) s.t.

∫
H

exp {i〈h, x〉} dµ(x) = exp

{
i〈a, h〉 − 1

2
〈h,Qh〉

}
︸ ︷︷ ︸

=:N̂a,Q(h)

, h ∈ H.

Na,Q is called non-degenerate if kerQ = {0}.

Recall: for H = Rn the Fourier inversion theorem asserts that two

measures with the same characteristic functional are equal. This

also is still true when dimH =∞. In particular, Gaussian

measures are entirely characterized by their mean and covariance

operator.
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Existence of Gaussian measures

1. Let a ∈ H and Q ∈ L+(H) with {ek}k∈N ⊆ H an ONB of H

associated to Q. Then

∀k ∈ N : Qek = λkek, λk ≥ 0 .

2. Identify H with `2 via x 7→ (〈x, ek〉)k∈N.

3. Define the measure Na,Q on B(R∞) by

Na,Q =×
k∈N

Nak,λk .
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Definition (separable)

This gives a measure on R∞ :=×k∈NR and not on `2, but

Theorem

µ := Na,Q is concentrated on `2 i.e. µ(`2) = 1.

Proof.
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Closing remarks
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What if H is less well-behaved?

More generally, how can one define a Gaussian measure?

1. via a density (needs dimH <∞)

2. via cont. linear functions (needs rich enough dual theory e.g.

loc. convex TVS)

3. via the characteristic functional (needs Fourier theory on H)

4. via identification H ' `2 (needs H to be a separable Hilbert

space)
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