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Notation, Review, etc.

Unless otherwise specified, H denotes a real, separable Hilbert
space.

B(H)... Borel o — algebra on H
L(H) :={T € L(H)| linear, bounded}
LT (H) :={T € L(H)| symmetric, pos. semi-definite}

o0

L{(H) = {T € LT (H)

(er, Teg) < 00, (er)ren ONB of H} .
k=1

For H = R% we have
LT (RY) = LT(RY) C L(RY).



Spectral Theorem for Q € L (H)

Theorem
Let Q € LT (H). Then there exists an ONB (ey.)xen of H and a
sequence (\p)pen € £F s.t.

Vk € N: Qe = Ager, >0

in particular A\, — 0 as k — oc.
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Product measures

Define

F = 0({33 e R®: (2gy,...,25,) € A} : Ac BR"),n € N)
Proposition Oksbn, A
F coincides with B(R*>®) and the o-algebra generated by the
projections.
Theorem

Let (Py)ren be a sequence of probability measures on (R, B(R)).
Then there exists a unique probability measure on (R*, F) s.t.
for every Ci, .. k,.A we have

P(Chy,...bn,a) = (Pry X o X Py, )(A).
In particular, for every i € N the projection onto the k-th
coordinate my, : x — xy, has distribution P}, and {m;,}7°  is a set
of independent real valued random variables w.r.t. IP.



One-dimensional Hilbert spaces



Definition (1-dim.)

Let a € R, A > 0. Then define the measure N,  on B(R) by

h=0) Nos(B) =B =4" “SP ypenm
- a,\ — Va - 0 GQB’ 3

and

_M}dx.

(A £0) dNa,m):mexp{ =



Moments and characteristic function (1-dim.)

For a € R, A > 0 we have

mean a = [Jgx dNgx(z)
variance A = [gl@—a)? ANy ()
char. function Ny (k) = exp{iah—3An2}, heR
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Finite-dimensional Hilbert spaces
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Definition (fin. dim.)

Definition
A measure ;o on H is called Gaussian, if for every h € H the
functional z +— (h, x) has law N, ) for some a € R, A > 0.
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Construction (fin. dim.)

1. Let H be a real Hilbert space with dim(H) =d, a € H,
Qe LT(H). Then let {e1,...,eq} € H be an ONB of H s.t.

VlSde:Qek:/\kek, /\k:ZO-
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Construction (fin. dim.)

1. Let H be a real Hilbert space with dim(H) =d, a € H,
Qe LT(H). Then let {e1,...,eq} € H be an ONB of H s.t.

VlSde:Qek:/\kek, /\kZO-

2. ldentify H with R? via 2 — ((z,e1),..., (z,eq)).

3. Then define the measure N, g on B(H) by

d

Nog = X Nay oz
k=1
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Is this construction Gaussian?

Theorem
N, is a Gaussian measure.

Proof.
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Figure in H = R?

15



Moments and characteristic function (fin. dim.)

For a,e H,QQ € L (H) we have

mean a = [gxdN,q(x)
covariance (y,Qz) = [y, (x—a))(z, (x —a)) dNg ()
char. functional m(h) = exp{i(h,a) — $(h,Qh)}, he H
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Moments and characteristic function (fin. dim.)

For a,e H,QQ € L (H) we have

mean a = [gxdN,q(x)

covariance (y,Qz) = fH<y, (z —a))(z, (z — a)) dNy ()

char. functional m(h) = exp {i<h, a) — %(h, Qh>} , he H
Proposition

If det(Q) > 0 i.e. A, > 0 for every k € {1,...,d}, then

—;ex —1 r—a),Q (z—a T
Waglw) = s on{ - (@ -0, @ -0} dr
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Separable Hilbert spaces
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Definition of mean

Let ;1 be a measure on (H,B(H)) s.t. [ |lz]| du(x) < oo.

Then h — F(h) := [,;(h, ) du(z) is bounded since

F(R)| < /H ()] du(z) < [11] /H el du(z)
| S

Thus by Riesz’ Representation theorem dla € H:

<h,a>:/H<h,x> du(z), heH.

called the mean of p.
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Intermezzo: Bochner spaces

It is clear how to integrate f : H — R when there is a measure on
H. But how about f: H — H, e.g. x + x, as in the definition of
the mean?
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Intermezzo: Bochner spaces

It is clear how to integrate f : H — R when there is a measure on
H. But how about f: H — H, e.g. x + x, as in the definition of
the mean?

Let (£2,.A,P) be a probability space. Then define the Bochner
space

LA H) = w0 — Hlu measurable,/ lu(@)ll? dP(w) < oo
Q

::”uHZL),P(Q;H)
where 1 < p < oco.
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Intermezzo: Bochner integral

Proposition
The set { Y7 | 1a,h; : A; € F,h; € H} of simple functions lies
dense in (LP(Q; H), || - || e (o))
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Intermezzo: Bochner integral

Proposition
The set { Y7 | 1a,h; : A; € F,h; € H} of simple functions lies
dense in (LP(Q; H), || - || e (o))

Definition
For Y7 | 14,h; € L'(; H) define

/i 1Aihid]P) = iP(Az)hz eH
i=1 =1

For u € L'(Q; H), define the Bochner integral of u as

dP := i 1 wh®ap e
/u kggo/; AT ©
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Intermezzo: Bochner integral

Proposition
Let f: H — R be a bounded linear functional and
u € LY(Q; H). Then

| [t ap] = [ fluen ave)
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Characterization of the mean

Theorem
Indeed,

a= /Hx du(z).

Proof.
Let a € H be the mean of iz and let h € H be arbitrary. Then

x + (h,z) defines a bounded linear functional on H. Hence it
can be pulled into the integral and we have

o) = [ oy aute) = (1 [ o auta))

Uniqueness of a gives the result.
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Definition the covariance

Let p be a measure on (H,B(H)) s.t. [, ||lz]|* du(z) < oo.
Then (h, k) — G(h, k) := [;(h,x —a)(k,x —a) du(zx) is bounded

since

er,k)rs/Hm,x—aM (k2 — a)] dpa(z)

< ||l Hkll/ lz — al|* dp(x)
H

Vv
<o

Thus by Riesz' Representation theorem there exists a unique
bounded linear operator Q) : H — H s.t.

<h,ka>:/H<h,az—a><k:,a:—a> dp(z), h,ke H.

called the covariance of .
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Properties of the covariance

Theorem

Let ju be a measure on (H,B(H)) s.t. a and Q exist. Then
Q € L{ (H) i.e. Q is symmetric, positive semi-definite and of
trace class.

Proof.
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Definition of Gaussian Measures

Definition
A measure pon (H,B(H)) is called Gaussian if
Ja € H,Q € L (H) st.

/Hexp {i(h,2)} du(z) = exp {i<a, By — %(h, Qh>}, hed

o —

=:Na,q(h)

N,,q is called non-degenerate if ker Q = {0}.
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Definition of Gaussian Measures

Definition
A measure pon (H,B(H)) is called Gaussian if
Ja € H,Q € L (H) st.

/Hexp {i(h,2)} du(z) = exp {i<a, By — %(h, Qh>}, hed

o —

=:Na,q(h)

N,,q is called non-degenerate if ker Q = {0}.

Recall: for H = R” the Fourier inversion theorem asserts that two
measures with the same characteristic functional are equal. This
also is still true when dim H = oo. In particular, Gaussian
measures are entirely characterized by their mean and covariance
operator.
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Existence of Gaussian measures

1. Leta € H and Q € LT (H) with {ex}ren € H an ONB of H
associated to ). Then

Vk € N:Qep = e, N\ >0 .
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Existence of Gaussian measures

1. Leta € H and Q € LT (H) with {ex}ren € H an ONB of H
associated to ). Then

Vk € N:Qep = e, N\ >0 .

2. Identify H with £2 via = — ((z, ex))ren-

3. Define the measure N, o on B(R*) by

Na,Q = >< Nak,/\k-
keN
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Definition (separable)

This gives a measure on R>® := XkeNR and not on £2, but
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Definition (separable)

This gives a measure on R>® := XkeNR and not on £2, but

Theorem
= N ¢ is concentrated on (2 i.e. u(f?) =1.

Proof.
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Is this construction Gaussian?

Theorem
N, is a Gaussian measure.

Proof.
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Closing remarks
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What if H is less well-behaved?

More generally, how can one define a Gaussian measure?
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What if H is less well-behaved?

More generally, how can one define a Gaussian measure?

1. via a density (needs dim H < o0)

2. via cont. linear functions (needs rich enough dual theory e.g.

loc. convex TVS)
3. via the characteristic functional (needs Fourier theory on H)

4. via identification H ~ (? (needs H to be a separable Hilbert
space)
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