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Note - Erratum from last week

Theorem

Let Q ∈ L+
1 (H) and injective. Then there exists an ONB

(ek)k∈N of H and a sequence (λk)k∈N ∈ `1 s.t.

∀k ∈ N : Qek = λkek, λk ≥ 0

in particular λk → 0 as k →∞.

Otherwise we only get an orthonormal set and not an orthonormal

basis.

From here on, Q is assumed to be non-degenerate.
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New Formulation

Theorem

Let Q ∈ L+
1 (H) and injective. Then there exists an ONB (ek)k∈N

of H and a sequence (λk)k∈N ∈ `1 s.t. ∀k ∈ N : λk ≥ 0 and

Qx =

∞∑
k=1

λk〈ek, x〉, x ∈ H

Q1/2x =

∞∑
k=1

λ
1/2
k 〈ek, x〉, x ∈ H

Q−1x =

∞∑
k=1

λ−1
k 〈ek, x〉, x ∈ H

in particular, Q−1 is unbounded and only defined on Q(H).
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Gaussian Random Variables
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Gaussian Random Variable

Definition

A random variable X : (Ω,F ,P)→ (H,B(H)) is called Gaussian

if it has Gaussian law i.e. if the measure P ◦X−1 is Gaussian.
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Convergence of Gaussian RVs

Theorem

Let (Xn)n∈N be a sequence of H-valued Nan,Qn-distributed RVs

s.t. Xn → X in L2. Then X has distribution Na,Q where

∀h, k ∈ H : 〈an, h〉 → 〈a, h〉, 〈h,Qnk〉 → 〈h,Qk〉 (1)
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Translation and rescaling of Gaussian RVs

Theorem

Let µ = Na,Q be a Gaussian measure on (H,B(H)), b ∈ H,

T ∈ L(H,K). Then the function h 7→ Th+ b is Gaussian with

distribution NTa+b,TQT ∗ .
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Translation and Rescaling of Gaussian RVs: Corollary

Corollary

Let µ = N0,Q be a Gaussian measure on (H,B(H)),

z1, . . . , zn ∈ H and T : H → Rn defined by

Tx = (〈z1, x〉, . . . , 〈zn, x〉), x ∈ H. (2)

Then T is a Gaussian random variable with values in Rn and law

NQ′ where

Q′ = TQT ∗, i.e. Q′i,j = 〈zi, Qzj〉, i, j = 1, . . . , n. (3)
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Non-degenerate Gaussian measures are full

Theorem
Let µ = Na,Q be a non-degenerate Gaussian measure on

(H,B(H)). Then the smallest open subset U ⊆ H with

µ(U) = 1 is H itself.
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White Noise Mapping
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White Noise Mapping

Definition

Let µ be a Gaussian measure on (H,B(H)). The mapping

Q1/2(H)→ L2(H,µ) defined by z 7→Wz(x) := 〈Q−1/2z, x〉 is

called the white noise mapping.
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White Noise Mapping

Proposition

The white noise mapping is an isometry on Q1/2(H) and can

thus be uniquely extended to an isometry on Q1/2(H) = H.

Proof.
For any z1, z2 ∈ H we have

∫
H
Wz1(x)Wz2(x)dµ(x) =

∫
H
〈Q−1/2z1, x〉〈Q−1/2z2, x〉dµ(x)

= 〈Q−1/2z1, QQ
−1/2z2〉 = 〈z1, z2〉.

Since Q is assumed to be injective, Q1/2(H) = H.
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Cameron-Martin Formula
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Equivalence and Mutual Singularity of Measures

Let µ, ν be two measures on (Ω,F). Then µ, ν are called

• equivalent (in symbols µ ≈ ν) if both dµ
dν and dν

dµ exist i.e. by

Radon-Nikodym, if ∀A ∈ F : µ(A) = 0 if and only if

ν(A) = 0.

• mutually singular (in symbols µ ⊥ ν) ∃A ∈ F : µ(A) = 1

and ν(A) = 0.

e.g. δ0 ⊥ δ1, δ0 ⊥ λ1, N0,1 ≈ N1,1, N0,1 ≈ λ1, . . .

But e.g. δ2 + Uni[0, 1] and λ1 are neither mutually singular nor

equivalent
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Hellinger Integral

Definition
Let µ, ν be two probability measures on a probability space

(Ω,F) and let ζ be any measure on (Ω,F) s.t. dµ
dζ and dν

dζ exist.

Then the Hellinger integral of µ and ν is defined as

H(µ, ν) =

∫
Ω

√
dµ

dζ

dν

dζ
dζ . (4)

H(µ, ν) is independent of the choice of ζ and Hölder’s inequality

we have

0 ≤ H(µ, ν) ≤
(∫

Ω

dµ

dζ
dζ

) 1
2
(∫

Ω

dν

dζ
dζ

) 1
2

≤ 1 (5)
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Hellinger Integral: Example

Example

Let µ := N0,λ, ν := Na,λ be Gaussian measures on (R,B(R))

with a ∈ R, λ > 0. Then

dν

dµ
(x) = exp

{
− a

2

2λ
+
ax

λ

}
, x ∈ R. (6)

and

H(µ, ν) = exp

{
− a

2

8λ

}
(7)
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Raison d’être

Theorem

µ ⊥ ν if and only if H(µ, ν) = 0.

Proof.
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Raison d’être

If µ ≈ ν then H(µ, ν) > 0.

H(µ, ν) =

∫
Ω

√(
dµ

dν

dν

dζ

)
dν

dζ
dζ (8)

=

∫
Ω

√
dµ

dν

dν

dζ
dζ (9)

=

∫
Ω

√
dµ

dν
dν > 0 (10)

The converse does not necessarily hold. However, for product

measures, it does.
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Mutual Singularity for Product Measures

Theorem (Kakutani)

Let (µk)
∞
k=1 and (νk)

∞
k=1 be sequences of probability measures on

(R,B(R)) with µ :=×∞k=1 µk, ν :=×∞k=1 νk. Then

H(µ, ν) =

∞∏
k=1

H(µk, νk). (11)

If µk ≈ νk for every k ≥ 0 and H(µ, ν) > 0, then µ ≈ ν and

dν

dµ
= lim

n→∞

∞∏
k=1

(
dνk
dµk
◦ πk

)
∈ L1(R∞, µ). (12)

Proof.

See [Da Prato, 2006, Ex. 2.6, Thm 2.7]. 20



Cameron-Martin Theorem

Theorem (Cameron-Martin)

Let µ := N0,Q, ν := Na,Q be Gaussian measures on (H,B(H))

and a ∈ H. Then

(i) if a 6∈ Q1/2(H), then µ ⊥ ν.

(ii) if a ∈ Q1/2(H), then µ ≈ ν and density is given by

dν

dµ
(x) = exp

{
−1

2
‖Q−1/2a‖2H +WQ−1/2ax

}
, x ∈ H. (13)

Proof.
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Feldman-Hajek Theorem

We have seen that translation along some a ∈ H gives either an

equivalent measure or a mutually singular. In fact, this holds true

more generally.

Theorem (Feldman-Hajek)

Let Q,R ∈ L+
1 (H) s.t. QR = RQ and let µ := NQ, ν := NR.

Then µ and ν are equivalent if and only if

∞∑
k=1

(λk − rk)2

(λk + rk)2
<∞ (14)

where λk and rk denote the eigenvalues of Q and R, respectively.

Otherwise they are mutually singular.

Proof.
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Feldman-Hajek Theorem: Corollary

Corollary
Let R = αQ with α > 0. Then by the Feldman-Hajek Theorem,

for α 6= 1 we have

N0,Q ⊥ N0,R. (15)

Upshot: Measures on infinite-dimensional spaces have a strong

tendency to be mutually singular. Recall here also that

µ(Q1/2(H)) = 0.
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