Gaussian Random Variables [Da Prato, 2006, Chap. 1 & 2]

G. Chiusole

TU München

Table of Contents

1. Gaussian Random Variables

2. White Noise Mapping

3. Cameron-Martin Formula

Note - Erratum from last week

Theorem

Let $Q \in L_1^+(H)$ and injective. Then there exists an ONB $(e_k)_{k \in \mathbb{N}}$ of H and a sequence $(\lambda_k)_{k \in \mathbb{N}} \in \ell^1$ s.t.

$$\forall k \in \mathbb{N} : Qe_k = \lambda_k e_k, \quad \lambda_k \ge 0$$

in particular $\lambda_k \to 0$ as $k \to \infty$.

Otherwise we only get an orthonormal set and not an orthonormal basis.

From here on, ${\cal Q}$ is assumed to be non-degenerate.

New Formulation

Theorem

Let $Q \in L_1^+(H)$ and injective. Then there exists an ONB $(e_k)_{k \in \mathbb{N}}$ of H and a sequence $(\lambda_k)_{k \in \mathbb{N}} \in \ell^1$ s.t. $\forall k \in \mathbb{N} : \lambda_k \geq 0$ and

$$Qx = \sum_{k=1}^{\infty} \lambda_k \langle e_k, x \rangle, \quad x \in H$$

$$Q^{1/2}x = \sum_{k=1}^{\infty} \lambda_k^{1/2} \langle e_k, x \rangle, \quad x \in H$$

$$Q^{-1}x = \sum_{k=1}^{\infty} \lambda_k^{-1} \langle e_k, x \rangle, \quad x \in H$$

in particular, Q^{-1} is unbounded and only defined on Q(H).

Gaussian Random Variables

Gaussian Random Variable

Definition

A random variable $X:(\Omega,\mathcal{F},\mathbb{P})\to (H,\mathcal{B}(H))$ is called Gaussian if it has Gaussian law i.e. if the measure $\mathbb{P}\circ X^{-1}$ is Gaussian.

Convergence of Gaussian RVs

Theorem

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of H-valued N_{a_n,Q_n} -distributed RVs s.t. $X_n\to X$ in L^2 . Then X has distribution $N_{a,Q}$ where

$$\forall h, k \in H : \langle a_n, h \rangle \to \langle a, h \rangle, \quad \langle h, Q_n k \rangle \to \langle h, Qk \rangle$$
 (1)

Translation and rescaling of Gaussian RVs

Theorem

Let $\mu = N_{a,Q}$ be a Gaussian measure on $(H, \mathcal{B}(H))$, $b \in H$, $T \in L(H,K)$. Then the function $h \mapsto Th + b$ is Gaussian with distribution N_{Ta+b,TQT^*} .

Translation and Rescaling of Gaussian RVs: Corollary

Corollary

Let $\mu = N_{0,Q}$ be a Gaussian measure on $(H, \mathcal{B}(H))$, $z_1, \ldots, z_n \in H$ and $T: H \to \mathbb{R}^n$ defined by

$$Tx = (\langle z_1, x \rangle, \dots, \langle z_n, x \rangle), \quad x \in H.$$
 (2)

Then T is a Gaussian random variable with values in \mathbb{R}^n and law $N_{Q'}$ where

$$Q' = TQT^*$$
, i.e. $Q'_{i,j} = \langle z_i, Qz_j \rangle$, $i, j = 1, \dots, n$. (3)

Non-degenerate Gaussian measures are full

Theorem

Let $\mu=N_{a,Q}$ be a non-degenerate Gaussian measure on $(H,\mathcal{B}(H))$. Then the smallest open subset $U\subseteq H$ with $\mu(U)=1$ is H itself.

White Noise Mapping

White Noise Mapping

Definition

Let μ be a Gaussian measure on $(H,\mathcal{B}(H))$. The mapping $Q^{1/2}(H) \to L^2(H,\mu)$ defined by $z \mapsto W_z(x) := \langle Q^{-1/2}z, x \rangle$ is called the **white noise mapping**.

White Noise Mapping

Proposition

The white noise mapping is an isometry on $Q^{1/2}(H)$ and can thus be uniquely extended to an isometry on $\overline{Q^{1/2}(H)} = H$.

Proof.

For any $z_1, z_2 \in H$ we have

$$\int_{H} W_{z_{1}}(x)W_{z_{2}}(x)d\mu(x) = \int_{H} \langle Q^{-1/2}z_{1}, x \rangle \langle Q^{-1/2}z_{2}, x \rangle d\mu(x)$$
$$= \langle Q^{-1/2}z_{1}, QQ^{-1/2}z_{2} \rangle = \langle z_{1}, z_{2} \rangle.$$

Since Q is assumed to be injective, $\overline{Q^{1/2}(H)}=H.$

Cameron-Martin Formula

Equivalence and Mutual Singularity of Measures

Let μ, ν be two measures on (Ω, \mathcal{F}) . Then μ, ν are called

- equivalent (in symbols $\mu \approx \nu$) if both $\frac{\mathrm{d}\mu}{\mathrm{d}\nu}$ and $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ exist i.e. by Radon-Nikodym, if $\forall A \in \mathcal{F} : \mu(A) = 0$ if and only if $\nu(A) = 0$.
- mutually singular (in symbols $\mu \perp \nu$) $\exists A \in \mathcal{F} : \mu(A) = 1$ and $\nu(A) = 0$.

Equivalence and Mutual Singularity of Measures

Let μ, ν be two measures on (Ω, \mathcal{F}) . Then μ, ν are called

- equivalent (in symbols $\mu \approx \nu$) if both $\frac{\mathrm{d}\mu}{\mathrm{d}\nu}$ and $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ exist i.e. by Radon-Nikodym, if $\forall A \in \mathcal{F} : \mu(A) = 0$ if and only if $\nu(A) = 0$.
- mutually singular (in symbols $\mu \perp \nu$) $\exists A \in \mathcal{F} : \mu(A) = 1$ and $\nu(A) = 0$.

e.g.
$$\delta_0 \perp \delta_1, \delta_0 \perp \lambda^1, N_{0,1} \approx N_{1,1}, N_{0,1} \approx \lambda^1, \dots$$

But e.g. $\delta_2 + \mathrm{Uni}[0,1]$ and λ^1 are neither mutually singular nor equivalent

Hellinger Integral

Definition

Let μ, ν be two probability measures on a probability space (Ω, \mathcal{F}) and let ζ be any measure on (Ω, \mathcal{F}) s.t. $\frac{\mathrm{d}\mu}{\mathrm{d}\zeta}$ and $\frac{\mathrm{d}\nu}{\mathrm{d}\zeta}$ exist. Then the **Hellinger integral** of μ and ν is defined as

$$H(\mu,\nu) = \int_{\Omega} \sqrt{\frac{\mathrm{d}\mu}{\mathrm{d}\zeta}} \frac{\mathrm{d}\nu}{\mathrm{d}\zeta} \ \mathrm{d}\zeta \ . \tag{4}$$

Hellinger Integral

Definition

Let μ, ν be two probability measures on a probability space (Ω, \mathcal{F}) and let ζ be any measure on (Ω, \mathcal{F}) s.t. $\frac{\mathrm{d}\mu}{\mathrm{d}\zeta}$ and $\frac{\mathrm{d}\nu}{\mathrm{d}\zeta}$ exist. Then the **Hellinger integral** of μ and ν is defined as

$$H(\mu,\nu) = \int_{\Omega} \sqrt{\frac{\mathrm{d}\mu}{\mathrm{d}\zeta}} \frac{\mathrm{d}\nu}{\mathrm{d}\zeta} \ \mathrm{d}\zeta \quad . \tag{4}$$

 $H(\mu,\nu)$ is independent of the choice of ζ and Hölder's inequality we have

$$0 \le H(\mu, \nu) \le \left(\int_{\Omega} \frac{\mathrm{d}\mu}{\mathrm{d}\zeta} \mathrm{d}\zeta \right)^{\frac{1}{2}} \left(\int_{\Omega} \frac{\mathrm{d}\nu}{\mathrm{d}\zeta} \mathrm{d}\zeta \right)^{\frac{1}{2}} \le 1 \tag{5}$$

Hellinger Integral: Example

Example

Let $\mu:=N_{0,\lambda}$, $\nu:=N_{a,\lambda}$ be Gaussian measures on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ with $a\in\mathbb{R}$, $\lambda>0$. Then

$$\frac{\mathrm{d}\nu}{\mathrm{d}\mu}(x) = \exp\left\{-\frac{a^2}{2\lambda} + \frac{ax}{\lambda}\right\}, \quad x \in \mathbb{R}.$$
 (6)

and

$$H(\mu, \nu) = \exp\left\{-\frac{a^2}{8\lambda}\right\} \tag{7}$$

Raison d'être

Theorem

 $\mu \perp \nu$ if and only if $H(\mu, \nu) = 0$.

Proof.

18

Raison d'être

If $\mu \approx \nu$ then $H(\mu, \nu) > 0$.

$$H(\mu, \nu) = \int_{\Omega} \sqrt{\left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu} \frac{\mathrm{d}\nu}{\mathrm{d}\zeta}\right) \frac{\mathrm{d}\nu}{\mathrm{d}\zeta}} \,\mathrm{d}\zeta \tag{8}$$

$$= \int_{\Omega} \sqrt{\frac{\mathrm{d}\mu}{\mathrm{d}\nu}} \frac{\mathrm{d}\nu}{\mathrm{d}\zeta} \,\mathrm{d}\zeta \tag{9}$$

$$= \int_{\Omega} \sqrt{\frac{\mathrm{d}\mu}{\mathrm{d}\nu}} \, \mathrm{d}\nu > 0 \tag{10}$$

The converse does not necessarily hold. However, for product measures, it does.

Mutual Singularity for Product Measures

Theorem (Kakutani)

Let $(\mu_k)_{k=1}^{\infty}$ and $(\nu_k)_{k=1}^{\infty}$ be sequences of probability measures on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ with $\mu:=\times_{k=1}^{\infty}\mu_k$, $\nu:=\times_{k=1}^{\infty}\nu_k$. Then

$$H(\mu, \nu) = \prod_{k=1}^{\infty} H(\mu_k, \nu_k).$$
 (11)

If $\mu_k \approx \nu_k$ for every $k \geq 0$ and $H(\mu, \nu) > 0$, then $\mu \approx \nu$ and

$$\frac{\mathrm{d}\nu}{\mathrm{d}\mu} = \lim_{n \to \infty} \prod_{k=1}^{\infty} \left(\frac{\mathrm{d}\nu_k}{\mathrm{d}\mu_k} \circ \pi_k \right) \in L^1(\mathbb{R}^{\infty}, \mu). \tag{12}$$

Proof.

See [Da Prato, 2006, Ex. 2.6, Thm 2.7].

Cameron-Martin Theorem

Theorem (Cameron-Martin)

Let $\mu:=N_{0,Q}$, $\nu:=N_{a,Q}$ be Gaussian measures on $(H,\mathcal{B}(H))$ and $a\in H$. Then

- (i) if $a \notin Q^{1/2}(H)$, then $\mu \perp \nu$.
- (ii) if $a \in Q^{1/2}(H)$, then $\mu \approx \nu$ and density is given by

$$\frac{\mathrm{d}\nu}{\mathrm{d}\mu}(x) = \exp\left\{-\frac{1}{2}\|Q^{-1/2}a\|_H^2 + W_{Q^{-1/2}a}x\right\}, \quad x \in H.$$
 (13)

Proof.

21

Feldman-Hajek Theorem

We have seen that translation along some $a \in H$ gives either an equivalent measure or a mutually singular. In fact, this holds true more generally.

Theorem (Feldman-Hajek)

Let $Q, R \in L_1^+(H)$ s.t. QR = RQ and let $\mu := N_Q$, $\nu := N_R$. Then μ and ν are equivalent if and only if

$$\sum_{k=1}^{\infty} \frac{(\lambda_k - r_k)^2}{(\lambda_k + r_k)^2} < \infty \tag{14}$$

where λ_k and r_k denote the eigenvalues of Q and R, respectively. Otherwise they are mutually singular.

Proof.

Feldman-Hajek Theorem: Corollary

Corollary

Let $R=\alpha Q$ with $\alpha>0$. Then by the Feldman-Hajek Theorem, for $\alpha\neq 1$ we have

$$N_{0,Q} \perp N_{0,R}.$$
 (15)

Feldman-Hajek Theorem: Corollary

Corollary

Let $R=\alpha Q$ with $\alpha>0$. Then by the Feldman-Hajek Theorem, for $\alpha\neq 1$ we have

$$N_{0,Q} \perp N_{0,R}.$$
 (15)

Upshot: Measures on infinite-dimensional spaces have a strong tendency to be mutually singular. Recall here also that $\mu(Q^{1/2}(H))=0.$

Bibliography

Da Prato, G. (2006).

An Introduction to Infinite-Dimensional Analysis.

Springer Science & Business Media.