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Note - Erratum from last week

Theorem
Let Q € L{ (H) and injective. Then there exists an ONB
(ex)ren of H and a sequence (A )ren € £' s.t.

Vk € N: Qe = Aper, M. >0
in particular A\, — 0 as k — oo.

Otherwise we only get an orthonormal set and not an orthonormal
basis.

From here on, @ is assumed to be non-degenerate.



New Formulation

Theorem
Let Q € L{(H) and injective. Then there exists an ONB (ey)ren
of H and a sequence (A )ren € ¢* s.t. Vk € N: A\, > 0 and

Qr = Z)\k<ek,m>, reH
QY2 = ZAi/Q(ek,x>, xr€H

o0

Q" x—Z)\klek, reH

in particular, Q=1 is unbounded and only defined on Q(H).



Gaussian Random Variables



Gaussian Random Variable

Definition
A random variable X : (Q, F,P) — (H,B(H)) is called Gaussian
if it has Gaussian law i.e. if the measure P o X1 is Gaussian.



Convergence of Gaussian RVs

Theorem
Let (X,,)nen be a sequence of H-valued N, ¢, -distributed RVs
s.t. X,, — X in L?. Then X has distribution Ny, where

Vhk € H : (an, h) — (a,h), (h,Quk) — (h,Qk) (1)



Translation and rescaling of Gaussian RVs

Theorem
Let j1 = N, be a Gaussian measure on (H,B(H)), b€ H,
T € L(H,K). Then the function h +— Th + b is Gaussian with

distribution N1a1b7QT* -



Translation and Rescaling of Gaussian RVs: Corollary

Corollary
Let n = Ny g be a Gaussian measure on (H,B(H)),
Z1y...,2n € H and T : H — R" defined by

Tx = ((z1,2),...,{zn,2)), x€ H. (2)

Then T is a Gaussian random variable with values in R™ and law
Ng' where

Q/ = TQT*, ie. Q;j = <Z¢,Q2j>, i,j = 1, e, N (3)



Non-degenerate Gaussian measures are full

Theorem
Let 1 = N, be a non-degenerate Gaussian measure on

(H,B(H)). Then the smallest open subset U C H with
w(U) =1 is H itself.
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White Noise Mapping
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White Noise Mapping

Definition

Let 11 be a Gaussian measure on (H,B(H)). The mapping
QY?(H) — L*(H, ) defined by z +— W, (z) := (Q~Y2z,z) is
called the white noise mapping.
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White Noise Mapping

Proposition
The white noise mapping is an isometry on Q'/%(H) and can
thus be uniquely extended to an isometry on Q'/2(H) = H.

Proof.
For any 21,20 € H we have

/ W ()W, () () = /H (@ V221, 2)(Q 2, ) du(x)
=(Q7V%21,QQ722) = (21, 29).

Since @ is assumed to be injective, Q1/2(H) = H.
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Cameron-Martin Formula
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Equivalence and Mutual Singularity of Measures

Let i, v be two measures on (€2, F). Then p, v are called

e equivalent (in symbols p ~ v) if both d“ and d” exist i.e. by
Radon-Nikodym, if VA € F : u(A) =0 |f and onIy if

v(A) = 0.
e mutually singular (in symbols p L v) 3A € F: u(A) =1
and v(A) = 0.
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Equivalence and Mutual Singularity of Measures

Let i, v be two measures on (€2, F). Then p, v are called

e equivalent (in symbols p ~ v) if both d“ and d” exist i.e. by
Radon-Nikodym, if VA € F : u(A) =0 |f and onIy if

v(A) = 0.
e mutually singular (in symbols p L v) 3A € F: u(A) =1
and v(A) = 0.

e.g. 6 L 01,00 LAY, Noy &~ Nyq, Nog = A,

But e.g. d + Uni[0,1] and A! are neither mutually singular nor
equivalent
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Hellinger Integral

Definition
Let p, v be two probability measures on a probability space
dp

(€2, F) and let ¢ be any measure on (€2, ) s.t. = and ‘31—’5 exist.

Then the Hellinger integral of ;1 and v is defined as

i) = [ ([ E5 d- )
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Hellinger Integral

Definition
Let p, v be two probability measures on a probability space
dp

(€2, F) and let ¢ be any measure on (€2, ) s.t. = and ‘31—’(’ exist.

Then the Hellinger integral of ;1 and v is defined as

i) = [ ([ E5 d- )

H(u,v) is independent of the choice of ( and Holder's inequality
we have
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Hellinger Integral: Example

Example
Let p:= No, v := N, be Gaussian measures on (R, B(R))
with a € R, A > 0. Then

dv a2  ar
— 4= R.
du(x) exp{ ot } T e (6)
and
a2
H = - 7
(1, v) exp{ 8/\} (7)
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Raison d’étre

Theorem
w L v if and only if H(p,v) = 0.

Proof.
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Raison d’étre

If p~ v then H(p,v) > 0.

dpdr\ dv
avdc) dc (8)

Q
_ dp dv
N /Q \/;dg d¢ )
d
- /Q \/g dv >0 (10)

The converse does not necessarily hold. However, for product
measures, it does.

19



Mutual Singularity for Product Measures

Theorem (Kakutani)
Let (pu1)72, and (vy);2, be sequences of probability measures on
(R, B(R)) with pu:= X2y p, v := Xpoq V. Then

8

H(p,v) = || H(k, vi)- (11)

e
Il

1

If py =~ vy, for every k >0 and H(u,v) > 0, then u ~ v and

dv . s duy, 1
— =1 — L' (R*>, p). 12
m ngn;Q}H((i'ukoﬂ'k) € L (R, u) (12)

Proof.
See [Da Prato, 2006, Ex. 2.6, Thm 2.7]. O
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Cameron-Martin Theorem

Theorem (Cameron-Martin)
Let p:= No,g, v := Ngq be Gaussian measures on (H,B(H))
and a € H. Then

(i) ifa & QY?(H), then 1 L v.
(ii) ifa € QY2(H), then i ~ v and density is given by

1
TL(“T) = exp {QHQ‘I/Qaﬁq + WQmax} .z € H. (13)
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Feldman-Hajek Theorem

We have seen that translation along some a € H gives either an
equivalent measure or a mutually singular. In fact, this holds true
more generally.

Theorem (Feldman-Hajek)
Let Q. Re LT (H) st. QR = RQ and let i :== Ng, v := Ng.
Then p and v are equivalent if and only if

[o.¢] A .
Z d ’”’“ <0 (14)
1

where )\, and ri denote the eigenvalues of () and R, respectively.
Otherwise they are mutually singular.

Proof.
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Feldman-Hajek Theorem: Corollary

Corollary
Let R = aQ) with o > 0. Then by the Feldman-Hajek Theorem,

for v # 1 we have

No,g L Nor. (15)
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Feldman-Hajek Theorem: Corollary

Corollary
Let R = aQ) with o > 0. Then by the Feldman-Hajek Theorem,

for v # 1 we have
Nog L Nor. (15)

Upshot: Measures on infinite-dimensional spaces have a strong
tendency to be mutually singular. Recall here also that

WQ'2(H)) = 0.
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