Topologische Konstruktionen

G. Chiusole

1 Einbettung - Unterraum

Wie definiert man Unterobjekte? Was ist die richtige Definition eines Unterobjekts eines topologischen Raumes? Gibt es eine natürliche Konstruktion?

Kurz gesagt: Ja

Definition 1. Sei (X, τ) ein topologischer Raum und Y eine Menge und $h: Y \to X$ eine injektive Funktion. Dann nennt man

$$h^*\tau := \{h^{-1}(U)|U \in \tau\} \tag{1}$$

die von h und τ induzierte Topologie auf Y. Eine solche Funktion h nennt man auch eine Einbettung von Y in X^1 . Merke, dass h eine Bijektion zwischen Y und h(Y) ist. Mit den vorhergehenden Forderungen ist h daher ein Homeomorphismus: $Y \simeq h(Y)$. Man schreibt auch $Y \stackrel{h}{\hookrightarrow} X$.

Merke dass eine stetige, offene/abgeschlossene Funktion eine Einbettung ist, falls sie injektiv ist. Ein sehr wichtiger Spezialfall tritt ein wenn $Y \subseteq X$ eine Teilmenge ist und $I: Y \to X$ die Inklusion ist, also $\forall y \in Y: i(y) = y$. Dann spricht man von der Unterraumtopologie auf Y bzw. man bezeichnet $(Y, i^*\tau)$ als Unterraum. Die Menge von Mengen $f^*\tau$ ist eine Topologie, da Urbilder \emptyset , X, beliebige Vereinigungen, sowie beliebige Schnitte erhalten.

Von der Definition ist schon zu erkennen, dass es sich bei $f^*\tau$ um die kleinste (gröbste) Topologie handelt, sodass f stetig ist². Dadurch folgt auch schnell:

Corollary 1. Seien (X, τ) und (Y, v) topologische Räume und $\phi : Y \to X$. Dann ist ϕ genau dann stetig, wenn $i^*\tau \subseteq v$ stetig ist.

Corollary 2. Betracht man einen Unterraum, so gilt

$$i^*\tau = \{U \cap X | U \in \tau\} \quad . \tag{2}$$

Proof. Merke dass

$$i^*(U) = \{ y \in Y | i(y) \in U \} = \{ y \in Y | y \in U \} = Y \cap U$$
(3)

¹Als *Immersion* bezeichnet man eine lokale Einbettung; also eine Funktion h, sodass für jeden Punkt $y \in Y$ eine Umgebung N(x) existiert, sodass $h|_{N(x)}$ eine Einbettung ist.

²Nutze dazu die Definition der Stetigkeit: Urbilder offener Mengen sind offen.

Für eine allgemeine induzierte Topologie wie in Definition 1 existiert keine analoge³ Charakterisierung. Es ist tatsächlich eine Inklusion notwendig.

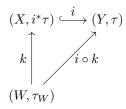
Wenn klar ist, dass es sich um topologische Räume handelt wird die Unterraumrelation mit " \subseteq " notiert. Eine andere Konvention ist einen Unterraume X von Y mit (X, i), also mit der Menge und der Inklusion zu identifizieren. Das geschieht dabei in Anlehnung an die allgemeinere Definition (1) einer induzierten Topologie.

Die Unterraumrelation ist transitiv :

Theorem 1 (Transitivität). Seien $X \stackrel{i}{\hookrightarrow} Y$ und $Y \stackrel{j}{\hookrightarrow} Z$ Unterräume, dann ist $X \stackrel{j \circ i}{\longleftrightarrow} Z$ ein Unterraum.

Proof. Sei U eine offene Menge in X. Dann hat sie die Form $U = i^{-1}(V)$ für eine in Y offene Menge V. Diese hat wiederum die Form $V = j^{-1}(W)$ für eine in Z offene Menge W. Also gilt $U = i^{-1}(j^{-1}(W)) = i^{-1} \circ j^{-1}(W) = (j \circ i)^{-1}(W)$.

Theorem 2. Sei $X \subseteq Y$ ein Unterraum, W ein beliebiger topologischer Raum und $k: W \to X$ eine Funktion. Dann ist k genau dann stetig wenn $i \circ k: W \to Y$ stetig ist.



Proof.

$$k \text{ stetig } \Leftrightarrow \forall U \in i^*\tau : k^{-1}(U) \in \tau_W$$

$$\Leftrightarrow \forall V \in \tau : k^{-1}(i^{-1}(V)) \in \tau_W$$

$$\Leftrightarrow \forall V \in \tau : (k^{-1} \circ i^{-1})(V) \in \tau_W$$

$$\Leftrightarrow \forall V \in \tau : (i \circ k)^{-1}(V) \in \tau_W$$

$$\Leftrightarrow i \circ k \text{ stetig}$$

Die Existenz einer Einbettung ist eine topologische Invariante Sei (Z, τ_Z) ein topologischer Raum. Sind zwei topologische Räume (X, τ_X) und (Y, τ_Y) homeomorph, dann existiert eine Einbettung $(X, \tau_X) \stackrel{h}{\hookrightarrow} (Z, \tau_Z)$ genau dann wenn eine Einbettung $(Y, \tau_Y) \stackrel{k}{\hookrightarrow} (Z, \tau_Z)$ existiert. Daraus folgt:

Haben zwei topologische Räume nicht die gleichen Eigenschaften bezüglich Einbettungen, so sind sie nicht homeomorph. Gleichermaßen ist das Zulassen einer Einbettung in den topologischen Raum (X, τ_X) eine topologische Invariante.

³Mit vernünftigen Einschränkungen

2 Identifizierungsraum - Quotientenraum

Bei einer Einbettung wird eine Topologie durch eine injektive Funktion von der Co-Domäne auf die Domäne zurück gezogen. Im Folgenden schiebt man eine Topologie der Domäne entlang einer surjektiven Funktion in die Co-Domäne.

Definition 2. Sei (X, τ) ein topologischer Raum, Y eine Menge und $p: X \to Y$ eine surjektive Funktion. Dann nennt man

$$p_*\tau := \{V \subseteq Y | p^{-1}(V) \in \tau\} \tag{4}$$

die von p und τ induzierte Topologie auf Y. Eine solche Funktion p nennt man auch eine Identifikationsabbildung.

Diesmal folgt direkt dass $p_*\tau$ die größte (feinste) Topologie auf Y ist, für welche die p stetig ist. Damit folgt auch wieder dass eine Abbildung $p:(X,\tau)\to (Y,\tau_Y)$ genau dann stetig ist wenn $\tau_Y\subseteq p_*\tau$ ist.

Merke dass eine Teilmenge $V \subseteq Y$ genau dann offen ist, wenn ihr Urbild offen ist. Eine stetige, surjektive Funktion ist also genau dann eine Identifikationsabbildung, wenn sie offen/abgeschlossen ist.

Identifikationsräume bezeichnet man auch mit der Projektion und der Menge: z.B.: "Sei (X, p) ein Identifikationsraum".

Die Identifikationsraumrelation ist transitiv

Theorem 3 (Transitivität). Seien $p:X \to Y$ und $q:Y \to Z$ Identifikationsraum, dann ist $q \circ p:X \to Z$ ein Identifikationsraum.

3 Quotientenraum

3.1 Allgemeine Konstruktion

Allgemein lässt sich ein Identifikationsraum durch eine beliebige Surjektion beschreiben. Eine besonders wohl verhaltene Art der Surjektion, ist die Quotientenabbildung bezüglich einer Äquivalenzrelation; Sie ist auch in natürlicher Form in algebraischen Strukturen zu finden.

Definition 3. Sei (X, τ) ein topologischer Raum und R eine Äquivalenzrelation auf der Menge X, sowie $q_R: X \to X/R$ die entsprechende Quotientenabbildung von Mengen definiert durch $\forall x \in X: q_R(x) = [x]_R$. Dann nennt man den Identifikationsraum

$$q_R: (X,\tau) \to (X/R, q_{R*}\tau) \tag{5}$$

den Quotientenraum von X modulo R (bezüglich der Quotientenabbildung q_R).

Diese Definition erlaubt erheblich allgemeinere Konstruktionen als die Folgende.

3.2 Quotienraum modulo einem Unterraum

Definition 4. Sei (X,τ) ein topologischer Raum und $A\subseteq X$ eine Teilmenge. Dann definiert

$$\forall x, y \in X : x \sim_A y \Leftrightarrow x = y \vee \{x, y\} \subseteq A$$

eine Äquivalenzrelation \sim_A . Dann heißt der Identifikationsraum

$$q_A: (X,\tau) \to (X/A, q_{A*}\tau) \tag{6}$$

 $der\ Quotientenraum\ von\ X\ modulo\ A.$

Die Bilder von $x \in X$, also die Äquivalenzklassen bezüglich \sim_A

$$[x]_A = \begin{cases} x & \text{wenn } x \notin A \\ A & \text{wenn } x \in A \end{cases}$$
 (7)

Der topologische Raum $(X/A, q_{A*}\tau)$ ist also als der Raum (X, τ) zu verstehen, in welchem der Unterraum A zu einem Punkt [A] kollabiert wurde.

4 Topologische Basen

4.1 Umgebungsbasis - lokale Basis

Definition 5. Sei (X,τ) ein topologischer Raum und $x\in X$. Dann heißt das Mengensystem

$$U_x := \{U_i(x)\}_{i \in I} \tag{8}$$

mit $\forall i \in I : U_i(x)$ eine Umgebung von x eine Umgebungsbasis von x falls für jede Umgebung U(x) von x gilt

$$\exists i \in I : U_i(x) \subseteq U(x) \tag{9}$$

Definition 6. Ein topologischer Raum (X, τ) erfüllt das erste Abzählbarkeitsaxiom wenn für jeden Punkt $x \in X$ eine abzählbare Umgebungsbasis existiert. Also wenn

$$\forall x \in X, \exists U_x : |U_x| \text{ abz\"{a}hlbar}$$
 (10)

Theorem 4. Sei (X, d) ein metrischer Raum. Dann erfüllt (X, d) das erste Abzählbarkeitsaxiom.

Proof. Fixiere $x \in X$. Dann bildet $U_x := \{B_r(x)\}$ mit $r = \frac{1}{k}$ für $k \in \mathbb{N}$ eine abzählbare Umgebungsbasis. Sei U(x) eine weitere Umgebung von x. Dann existiert per Definition ein $r' \in \mathbb{R}$ mit $B'_r(x) \subseteq U(x)$ dann existiert aber auch ein $k \in \mathbb{N}$ mit $\frac{1}{k} \leq r'$. Folglich existiert ein $B_r(x) \in U_x$ mit $B_r(x) \subseteq U(x)$.

Gleichermaßen bildet $U_x^{(\mathbb{Q})}:=\{B_r^{(\mathbb{Q})}(x)\}$ mit $r\in\mathbb{Q}$ eine abzählbare Umgebungsbasis für $x\in X$.

Für ein beliebigen topologischen Raum (X, τ) hat jeder Punkt $x \in X$ eine Umgebungsbasis. Diese ist durch den Umgebungsfilter, also das System aller Umgebungen gegeben.

4.2 Subbasis (auch Präbasis)

Theorem 5 (Subbasensatz). Sei X eine Menge und $\alpha \subseteq \wp(X)$ eine Menge von Mengen. Dann existiert eine eindeutige kleinste Topologie $\tau(\alpha)$, welche $\alpha \subseteq \tau(\alpha)$.

Proof. Merke: der Schnitt $\tau' := \bigcap_{j \in J} \tau_j$ beliebig vieler Topologien welche eine gemeinsame Grundmenge X haben ist wieder eine Topologie auf X:

- (i) $\emptyset, X \in \tau'$, da die τ_i Topologien sind.
- (ii) Seien $A, B \in \tau'$, dann $\forall j \in J : A, B \in \tau_j$ also $\forall j \in J : A \cap B \in \tau_j$ und daher $A \cap B \in \tau'$.
- (iii) Seien $A_i \in \tau'$ mit $i \in I$, dann $\forall j \in J : A_i \in \tau_j$, also $\forall j \in J : \bigcup_{i \in I} A_i \in \tau_j$, also $\bigcup_{i \in I} A_i \in \tau'$.

Sei nun $\tau(\alpha) := \bigcap \{ \tau \text{ Topologie auf } X | \alpha \subseteq \tau \}$. Dann gilt $\tau(\alpha) \subseteq \tau(\alpha)$ und für jede Topologie τ' auf X gilt $\tau(\alpha) \subseteq \tau$. Die Topologie $\tau(\alpha)$ ist somit die kleinste, welche α enthält und ist damit eindeutig bestimmt.

Man nennt $\tau(\alpha)$ die von α erzeugte Topologie auf X.

Definition 7. Sei (X, τ) ein topologischer Raum. Dann nennt man eine Menge an Mengen $\eta \subseteq \tau$ eine Basis der Topologie τ wenn gilt $\tau(\eta) = \tau$.

In anderen Worten: eine Teilmenge η einer Topologie τ heißt Subbasis, wenn jedes $U \in \tau$ ein endlicher Schnitt oder eine beliebige Vereinigung von Mengen in η ist.

Eine Subbasis einer Topologie ist nicht eindeutig bestimmt. Sei $U, V \in \alpha$ und $U \cup V \notin \alpha$, dann $\tau(\alpha) = \tau(\alpha \cup (U \cup V))$. Jede Topologie hat eine Subbasis: τ ist eine Subbasis von τ : $\tau(\tau) = \tau$.

4.3 Basis einer Topologie

Definition 8. Sei (X, τ) ein topologischer Raum. Dann nennt man $\beta := \{U_i\}_{i \in I} \subseteq \wp(X)$ eine topologische Basis der Topologie τ , wenn gilt $\{U_i\}_{i \in I} \subseteq \tau$ und

$$\forall U \in \tau : \exists J \subseteq I : U = \bigcup_{i \in J} U_i \tag{11}$$

In anderen Worten: Eine Teilmenge β einer Topologie τ heißt Basis,wenn jedes $U \in \tau$ eine Vereinigung von Mengen in β ist. Eine topologische Basis ist also eine Subbasis.

Eine topologische Basis ist nicht eindeutig bestimmt. So ist beispielsweise die Menge aller Singletons $\{x\}$ mit $x \in X$ eine Basis der diskreten Topologie auf X. Gleichermaßen ist aber auch die Topologie selbst, also $\wp(X)$ eine Basis. Nicht mal für eine fixierte Basis und ein fixiertes $U \in \tau$ sind die Mengen U_i eindeutig bestimmt.

Der Satz über die Subbasen zeigt, dass jede Menge an Mengen $\alpha \subseteq \wp(\alpha)$ eine Subbasis einer Topologie auf X ist; nämlich $\tau(\alpha)$. Für Basen ist das nicht der Fall: nicht jede Menge an Mengen $\beta \subseteq \wp(\alpha)$ ist eine topologische Basis einer Topologie auf X.

Theorem 6 (Charakterisierung einer Basis). Sei (X, τ) ein topologischer Raum und $\beta \subseteq \wp(X)$, welche X überdeckt (also $X = \bigcup_{U_i \in \beta} U_i$). Dann sind die folgenden Äquivalent:

- (a) Es existiert eine Topologie τ auf X für welche β eine Basis ist.
- (b) Für beliebige $U, V \in \beta$ und $x \in U \cap V$ existiert ein $W \in \beta$ mit $x \in W \subseteq U \cap V$.

(c) $\forall U_i \in \beta \exists U_j \in \beta : \bigcap_{i=1}^n U_i = \bigcup_{j \in J} U_j$.

Proof. (b) \Rightarrow (c): Sei $A := \bigcap_{i=1}^{n} U_i$ ein endlicher Schnitt von Mengen in β . Dann gilt $A = \bigcup_{x \in A} W$ wobei $W \in \beta$ mit $x \in W$.

- (c) \Rightarrow (b): Sei $x \in \cap_{i=1}^n U_i$. Dann gilt mittels $A = \bigcup_{x \in A} W$ dass ein W existiert mit $x \in W$ und $W \subset A$.
- (c) \Rightarrow (a): β ist genau dann eine Basis von $\tau(\beta)$ wenn die Voraussetzungen in (c) gelten. Sei $U \in \tau(\beta)$, dann ist U die leere Menge oder X oder ein endlicher Schnitt von Mengen in β , also nach (c) eine Vereinigung von Mengen in β oder eine Vereinigung von Mengen in β . Ist umgekehrt für $U, V \in \beta$ der Schnitt $U \cap V$ nicht darstellbar als eine Vereinigung von Mengen aus β und da $\tau(\beta)$ die kleinste Topologie ist, welche β enthält, folgt dass es keine Topologie auf X gibt für welche β eine Basis ist.

Example 1. Basis und Subbasis einer Topologie sind i.A. und meist verschieden. Die Subbasis ist i.A. kleiner:

Betrachte die Produkttopologie $\tau \times \tau'$ auf der Menge $X \times X'$. Dann ist $\{U \times V | U \in \tau, V \in \tau'\}$ eine Basis und $\{U \times X', X \times V | U \in \tau, V \in \tau'\}$ eine Subbasis.

Proposition 1. Sei (X, τ) ein topologischer Raum mit Umgebungsbasis U_x für einen beliebigen Punkt $x \in X$. Dann ist $\bigcup_{x \in X} U_x$ eine Basis für τ .

Theorem 7. Zwei Basen β und β' definieren genau dann die gleiche Topologie τ , wenn jedes $A \in \beta$ als Vereinigung von Mengen in β' darstellbar ist und vice versa.

Viele Sätze sind einfacher zu beweisen durch die Nutzung von Basen:

Theorem 8. Seien (X, τ) und (X', τ') topologische Räume mit Basis η und ζ , respektive.

- Sei $f:(X,\tau)\to (X',\tau')$. Dann ist f stetig genau dann wenn $\forall U\in \eta: f^{-1}(U)\in \tau$.
- $D \subseteq X$ liegt dicht in (X, τ) genau dann wenn $\forall B \in \eta : D \cap B \neq \emptyset$.
- $x \in \overline{A}$ genau dann wenn $\forall B \in \eta, x \in B : A \cap B \neq \emptyset$.

Definition 9. Ein topologischer Raum (X, τ) erfüllt das zweite Abzählbarkeitsaxiom wenn τ eine abzählbare Basis hat.

Example 2. Die Menge \mathbb{R}^n versehen mit der Standard-Topologie erfüllt das zweite Abzählbarkeitsaxiom. Die Menge aller

$$B_r(x) := \{ y \in \mathbb{R}^n : |x - y| < r, x \in \mathbb{Q}^n, 0 < r \in \mathbb{Q} \}$$
 (12)

ist abzählbar und bildet eine Basis.

Also alle offenen Kugeln mit rationalem Zentrum.

Das ist kein Zufall:

Theorem 9. Sei(X, d) ein separabler metrischer Raum. Dann erfüllt (X, d) das zweite Abzählbarkeitsaxiom.

 ${\it Proof.}$ Behauptung: Sei Ceine abzählbare Menge, welche dicht in (X,d) liegt. Dann ist die Menge

$$\beta := \{ B_r(x) | x \in C, 0 < r \in \mathbb{Q} \}$$

$$\tag{13}$$

eine abzählbare Basis für (X, d). Da β die Menge X überdeckt reicht es zu zeigen, dass für jedes $U \in \tau_d$ und jedes $z \in U$ existiert ein $B \in \beta$ mit $z \in B_r(x) \subseteq U$. Da U offen ist existiert ein hinreichend kleines $0 < r \in \mathbb{Q}$ mit $B_z(2r) \subseteq U$.

- \bullet Ist $z \in C,$ so erfüllt $B := B_z(2r)$ die gewünschten Eigenschaften
- Ist $z \notin C$, so existiert wegen der Dichtheit von C existiert ein $c \in C$ mit $c \in B_z(r)$. Mit der Dreicksungleichung der Metrik folgt $x \in B_c(r) \subseteq B_x(2r) \subseteq U$. Dann definiere $B := B_c(r)$.

Theorem 10. Sei (X, d) ein metrischer Raum, welcher das zweite Abzählbarkeitsaxiom erfüllt. Dann ist (X, d) separabel.

Proof. Sei β eine Basis von (X,d) und bezeichne mit x_B ein beliebiges aber fixes Element in B, mit $B \in \beta$. Dann liegt $D_{\beta} := \{x_B : \emptyset \neq B \in \beta\}$ dicht in X, da für ein beliebiges $U \in \tau$ gilt $D_{\beta} \cap U = D_{\beta} \cap (\cup_{i \in I} U_i) \neq \emptyset$. Also schneidet D_{β} jede offene Menge in X nicht trivial und ist folglich dicht in X. D_{β} ist abzählbar, da β abzählbar ist.

References

[S] A. Sieradski, An Introduction to Topology and Homotopy., PWS Publishing, 2009.